Sensing From Within

Week #4
Prof. Ryan Kastner
Five Senses for Humans?

- Our bodies have special sensory receptors

Example: Taste receptors are concentrated mostly on tongue
Exteroceptors and Interoceptors

- The perceptual system of any organism includes a set of external sensors (exteroceptors) and internal sensing mechanism (interoceptors or proprioception)

- *Can you touch your belly button in the dark?*
 How?

 Because of Proprioception
Senses for Robots?

- Essential for Robots!

- Robots have both **internal** and **external** sensors.

- *These sensor are capable of*
 - Sensing light
 - Temperature
 - Touch
 - Distance to another object, etc...
Proprioception in the Scribbler?

- There are **three** very useful internal mechanism!

1) **Stall**

 Why: It could be stuck against a wall!!

2) **Time**

 Why: Knowing the time is important to have more complex robot behaviors!!

3) **Battery Level**

 Why: So you can detect when to change the batteries!!
Sensing Stall

- `getStall()`
 - Returns True if the robot has stalled
 - Returns False Otherwise

How would you use this command as a control behavior?

```c
while not getStall():
    <do something>
    Keep doing
    <do something> until the robot has stalled
```
Sensing Stall: Example

- Write this program:

 "Go forward unless you bump into something"

  ```python
  while not getStall():
    forward(1.0)
    stop()
    speak ("Ouch! I think I bumped into something!")
  ```
Sensing Battery Power Levels

- Scribbler runs on 6AA batteries

- When the battery levels go down, you will get lower and lower voltages causing erratic behavior.

- `getBattery()`
 - Returns the current voltage being supplied by the battery
 - The battery voltage levels will vary between 0 and 9 volts (0 is being totally drained)
Sensing Battery Power Levels

- Scribbler runs on 6AA batteries

- When the battery levels go down, you will get lower and lower voltages causing erratic behavior.

- `getBattery()`
 - Returns the current voltage being supplied by the battery
 - The battery voltage levels will vary between 0 and 9 volts (0 is being totally drained)
Sensing Battery Power Levels: Example

- The red LED on the robot
 - remains lit when the power levels are high;
 - starts to flash when the battery levels are low

How would you use this command as a control behavior?

```python
while (getBattery() >= 5):
    <do something>
```
Time

- You used this sensor while writing timeRemaining and wait commands

- While writing commands like forward(1, 2.5), this is where Scribbler gets time information

- Try

 currentTime()
Time

- The value returned by `currentTime()` is a number that represents the seconds elapsed since some earlier time, whatever that is.

- Issue the command several times and notice the difference

  ```
  forward (1.0, 3.0)  forward (1.0, 3.0)
  wait(3.0)
  while timeRemaining (3.0)
  forward(1.0)
  ```
Time

- Remember these commands?

```plaintext
forward (1.0, 3.0)  forward (1.0, 3.0)
wait(3.0)
while timeRemaining (3.0)
  forward(1.0)
```

- Can you write the code to perform the same behavior using time sensor?
Remember These

do something N times
for step in range(N):
 do something

do something forever
while True:
 do something

do something for some duration
duration = <some time in seconds>
startTime = currentTime()
while timeRemaining(duration):
 do something

do something for some duration
while timeRemaining(duration):
 do something
Writing Conditionals

- Conditions result in either of two values: \textbf{True} (1) or \textbf{False} (0)

- Simple conditions can be written using comparison operations:
 - \(< \) (less than), \(\leq \) (less than or equal to)
 - \(> \) (greater than), \(\geq \) (greater than or equal to)
 - \(== \) (equal to), \(!= \) (not equal to)
Writing Conditionals

- Try these:
 - $42 > 23$
 - $a, b, c = 10, 20, 10$
 - $a == c$
 - $a == a$
 - $True == 1$
 - $False == 1$

- Try these too:
 - “Hello” == “Good Bye”
 - “Elmore” < “Elvis”
 - “New York” < “Paris”
 - “A” < “B”
 - “a” < “A”
Writing Conditionals

“Hello” == “Good Bye” → False

“Elmore” < “Elvis” → True

“New York” < “Paris” → True

“A” < “B” → True

“a” < “A” → False

- Strings are compared using alphabetical order;
- Uppercase letters are less than their equivalent lowercase counterparts
Writing Conditionals

- You can build more complex conditional expressions **using logical operations** (also called Boolean operations)
 - and
 - or
 - not

Try some examples

- \((5 > 7) \text{ and } (8 > 3)\)
- \(\text{not } ((5 > 7) \text{ and } (8 > 3))\)
Random Works

- One way to do interesting things with robots to inject some randomness in their behaviors

- Python provide a library for generating random numbers

- In order to access the random number library, you have the import random library:
 \[
 \text{from random import }*
 \]
Random Works

- There are many different features available in this library;

- Such as try

\[
\text{random}() \\
\text{Returns a random number between 0.0 and 1.0}
\]

\[
\text{random}(A, B) \\
\text{Returns a random number in the range } [A \ldots B]
\]
Asking Questions

- Scribbler can also ask questions:

 \texttt{askQuestion ("Are you Ready?")}

- You can have more control on these questions and answers:

 \texttt{askQuestion ("Change my pen to a different color and press ‘OK’ when ready")}

- You can even specify lists:

 \texttt{askQuestion ("What is your favorite ice cream flavor?", ["Vanilla", "Chocolate", "Mango", "Hazelnut", "Other"])}
How to Import Your File?

- Save your file to the Network Drive. Then:

```python
import sys
sys.path.append("X:/")
import your_file.py
```