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ABSTRACT

This work aims to develop a low-cost finger-based Blood Pressure (BP) assessment tool for adults.
This solution is based on an apparatus with a heart rate sensor associated with a force sensor for
measure the finger. Our premise is that the association of heart rate and force, both gathered from the
finger, will provide enough information for accurate BP measurement. Currently, available blood
pressure cuff devices are precise however, still inaccessible by a majority of people in developing
countries, and they can be inconvenient for carrying around for specific measurements. In this
study, we verified the accuracy of our solution from parametric fitting and machine learning, which
showed optimistic results when compared to a regular cuff-based device. In particular, we adapt a
new algorithm normally used for image search, from Google Research, and show that it can robust
estimate blood pressure through a nearest-neighbors approach. We call the device SmartBP, and the
algorithm RankBP.

Keywords Blood Pressure · Finger Oscillometry ·Machine Learning

1 Introduction

High blood pressure, or hypertension, is defined as systolic blood pressure (BP) with values above 130 mmHg and/or
diastolic BP above 80 mmHg, is common and increases with age. This disease remains the leading preventable cause of
premature death and disability worldwide, killing almost eight million people every year and is projected to increase
by 60% to affect 1.6 billion adults worldwide by 2025 [4]. High-income countries have stable or decreasing rates,
hypertension prevalence rates are increasing in low and middle income countries (LMICs) related to ageing of the
population and increases in exposure to lifestyle risk factors including unhealthy diets and lack of physical activity.
The access to blood pressure (BP) devices in these countries continues to be poor, often less than 10% [4], and it is
concerning because BP assessment is an important factor to prevent hypertension. Migrants from LMICs, especially
refugees, are especially vulnerable to poor BP control due to many post-migratory challenges such as navigating new
healthcare systems, cultural and language barriers, and low socioeconomic status which make them more likely to have
undetected or uncontrolled BP. Home BP monitoring for better BP control in refugees is believed to be a cost-effective
and vital technique that can deal with the barriers of accessing and being retained in care. Moreover, there is growing
research linking perceived stress, a common condition in refugees, to hypertension development and poor management.
Besides ethnicity-based hypertension disparities such as in the case of refugees, hypertension management during
pregnancy in low-resource settings has been a driver of maternal mortality in various LMICs [1]. Therefore, there is a
need for innovative techniques that make measuring BP at home or in stressful, resource-limited settings and in socially
disadvantaged populations cheaper, easier, safer and more accurate.
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Hypertension is exceedingly common, particularly in older adults, where more than 70% of people with age 65 years
and older had BP meeting the definition of hypertension in the National Health and Nutrition Examination Survey
(NHANES) [5], yet hypertension control rates are lower among older people. In the same NHANES study, BP control
to below 130/80 mmHg was achieved by 54, 50, 46, and 33% of people aged 20 to 54 years, 55 to 64 years, 65 to
74 years and 75 or more years, respectively [5]. Uncontrolled hypertension is associated with an increase in adverse
cardiovascular and renal outcomes and is the most important modifiable risk factor for premature cardiovascular disease
[7]. Older adults have additional challenges with advancing age including increasing multimorbidity and limitations
that affect mobility, dexterity, vision and hearing. Given the prevalence of uncontrolled hypertension and additional
challenges in the older adult population, it is essential that measurement of BP be done easily and accurately, but at the
same time usable by themselves with little to no training and can be operated with limited dexterity.

Heart rate and force sensors can be utilized in low-resource settings globally and in the US with vulnerable populations
experiencing hypertension disparities, such as refugees and other low income groups. Those sensors are easily found
online and can be used combined with simple microcontrollers. Some existing solutions to date are built in a way that
require extensive calibration per user [6] or require additional electronic devices [2]. The objective of this work is
to implement a BP measurement device using embedded devices and sensors, and we will replicate the work from
Chandrasekhar et al as a start point and for validation of the hardware setup. Also, we aim to implement machine
learning algorithms that will also perform blood pressure measurement using the same device as a data source. We
envision that such a tool would be cheap enough to be provided even in low-resource settings such as mobile clinics and
refugee camps directly to anyone who needs to regularly monitor their blood pressure. Our work is summarized in the
following contributions:

• Replication of the work from Chandrasekhar et al [2].
• Assembly of an apparatus for blood pressure measurement with real time data acquisition on the computer.
• Implementation of several machine learning algorithms: Random Forest, k-nearest neighbors and an imple-

mentation of a new online-learning ranking algorithm from Google Research, called OASIS.

2 Technical Material

The development of the SmartBP device is split into hardware and software implementation, data collection and analysis.
The following subsections will better explain the process of each step.

2.1 Hardware

For creating the SmartBP device, we used the pulse oximeter and heart-rate sensor for health MAX30102, and the
calibrated force sensor from Single Tact 15MM, 4.5N/1.0LB. Both sensors require I2C communication for sending the
sensor readings, therefore we chose a microcontroller Arduino Yun for communicating with the sensors. In Figure 1
we can see the model of the sensors used. The blood pressure is measured by using the applied force and heart rate
collected at the same time, therefore, we are creating our setup in a way that both sensors are placed in the top of each
other. In Figure 2 we can see the scheme of the hardware implementation with the Arduino.

Figure 1: Heart rate sensor MAX30102 (left), and Single Tact force sensor (right).

Between the force sensor and the PPG sensor we placed a rubber material in the same diameter of the force sensor, so
the applied force would be centered in the correct place. Also, for stabilizing the finger placement and to reduce the
noises due to motion and finger misplacement, we made a thin plastic cover that also helped to concentrate the LED
light on the finger.

The sampling rate of the sensors were at 10 samples per second, with microcontroller baud rate at 57600 symbols
per second. The way we used the I2C communication was by setting each sensor at a different address, and then the
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Figure 2: Components used in the implementation.

Figure 3: Exploded view of the SmartBP structure for sensor placement.

Arduino could know where is the data coming from. Parameters like LED brightness, ADC sampling and other details
for improving the PPG sensor were customized accordingly.

2.2 Methodology

In this section, we provide an overview of our methodology for estimating blood pressure given an oscillometric signal.
We provide two novel methods, building on the work of the authors in [2]. First, we deploy a Random Forest predictive
model that is trained on a combination of data we acquired from our experiments, as well as publicly available data
set. Second, we consider the problem of telemedicine more generally, and show that blood pressure estimation can be
solved as an information retrieval task. We argue that such a point of view is favorable in our situation, as it can be
applied more generally to other biomedical signals generated from telemedicine applications.

2.2.1 Learning to Estimate Blood Pressure

Estimating blood pressure from an oscillometric PPG signal is a common task, and the most popular methods employed
in cuff-based devices tend to either be based on physical models, or empirical methods [8]. The authors show that when
implemented in cuff-devices, these mathematical models and simple regression formulas can be extremely accurate,
with biases within ±1 mmHg. It stands to reason that such models of blood pressure can be used in the finger-pressing
oscillometric method, as the underlying anatomical processes are similar, as argued in previous work [2].

Figure 4: Real hardware implementation of the SmartBp system.
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However, while similar, the underlying anatomical processes in the finger are different than in the arm, and application
of physics-based mathematical models lacks formal justification. Empirical methods based on linear regression formulas
are promising, but such methods are estimated with step-wise regression, which has no formal justification for its use,
and is well known to not solve the problem it claims to, and is out of favor among serious statisticians and computer
scientists [9], [10], [11].

Estimating a true measurement y from a noisy signal x is a classical problem for modern machine learning methods. In
most cases, with signal processing data, the vector x is a noisy measurement of y, and we are interested in predicting
the true measurement given the data: p(y|x), where p(·|·) is a conditional probability density. In frequentist terms
(which we will use throughout the rest of the paper), the problem is to estimate y with a vector ŷ such that `(y, ŷ) is
minimized, where `(·, ·) is a loss function. However, the setting of blood pressure estimation is slightly different. With
blood pressure measurement through an oscillometric method, y is a small real-valued vector: y ∈ R2, but x ∈ Rn
is a sequence of n PPG sensor measurements sampled through time that are causally related to cuff-pressure, at each
time step. The estimation problem is to learn how a long sequence x can relate to a vector y, which is different from
merely trying to solve an estimation problem. In the deep learning, this prediction task is called sequence-to-sequence
modeling or seq2seq for short [12]. While being able to deploy such deep learning models would be ideal, the problem
of trying to accurately estimate blood pressure from an finger-pressing oscillometric signal is so new, that there is not
enough data to justify such a powerful learning method.

In our case, the signal x is indexed by time, and can be written as xt, and the task of predicting (but not forecasting a
scalar or small vector y has very recently gained traction in the machine learning community as Time Series Extrinsic
Regression [13], and is expected to be a fruitful area of research.

The authors in the aforementioned work showed that Random Forests were a powerful method for this class problems.
Random forests are a versatile and powerful modern machine learning method for tabular data [14]. Because they
form an ensemble of decision trees on bootstrapped subsections of data sample and data features, they are robust to
overfitting, and often provide high level performance with default settings. Since Random Forests are a commonly used
machine learning method, we direct the interested reader to [14] for more details.

2.2.2 Blood Pressure Estimation as Information Retrieval

In this section, we consider the problem of blood pressure estimation as information retrieval.

Information retrieval has a large body of work, and a large number of applications, such as speech processing,
music-retrieval, web search, etc [15], [16], [17]. In this paper, it is the following task: given a query vector q, and
database D, retrieve the set of k-nearest neighbors x1, ...,xk according to some similarity metric S(·, ·) ∈ R, where if
S(q,xi) > S(q,xj), then the query vector q is more similar to the vector xi than xj .

If Nk(q, S,D) is the set of k nearest neighbors according to S, then in machine learning settings, information retrieval
is often used to predict a hidden target label yq of the query as a function of the retrieved neighbors – usually each
neighbor xi also comes with a known target label yi. In regression settings, the prediction is an average of the k-nearest
neighbors:

yq ≈
1

k

∑
i∈Nk(q,S,D)

yi.

Under the assumption that people with similar blood pressures have similar oscillograms (which is the foundation of
oscillometric blood pressure measurement), it can be seen that blood pressure estimation can be reduced to information
retreival: given a query oscillometric PPG signal q, a similarity metric S, and a database D, we can predict the blood
pressure yq of the patient corresponding to q by finding the k-nearest neighbors N(q, S,D). This is often called a
ranking problem.

2.2.3 RankBP: Learning to Rank Blood Pressure

While standard similarity metrics S such as the euclidean distance exist, it is more interesting (and more useful) to try
and learn a similarity metric from data, so that it may give the best results for each application at hand. The approach
taken in this section is largely inspired by a work from Google Research [18]. We provide a brief overview, adapting
their notation to our setting. From this point on, we write symbols q and x as q and x, understanding that they refer to
d-dimensional vectors.

Given a query qi, we would like to retrieve the k-nearest neighbors corresponding to the bilinear similarity function SW.
I.e. SW(qi, xj) = qTi Wxj , where W ∈ Rd×d. The authors at Google Research proposed OASIS (Online Algorithm
for Large Scale Similarity Learning) for the purposes of image search retrieval. Image search often consists of flattening
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a tensor of pixels into a vector, and then embedding the vector into a feature space. This procedure is analagous to the
situation we find ourselves in: retrieving similar signals from a database. We adopt OASIS to our setting.

The algorithm works as follows: given qi, there are examples q+i ∈ D+ and q−i ∈ D− denoting vectors that are
considered more similar to qi and less similar to qi. I.e., SW(qi, q

+
i ) > SW(qi, q

−
i ) + 1, where the 1 acts as a ‘safety

margin’. The goal is to learn the similarity matrix W that maximizes the similarity of qi and q+i and minimizes the
similarity of qi and q−i . Thus each learning example is a triple: (qi, q

+
i , q

−
i ).

The ranking is relative, meaning that exact labels are not required. This is a useful condition in our setting: where
data is scarce, noisy, but expected to accumulate rapidly over time as SmartBP eventually gets adapted for general
use. Labeling data sets is costly, but since later iterations of SmartBP can be expected to interact with doctors, the
expertise of doctors can provide helpful relative ranking of patients: a doctor need only say that patient i has ‘high
blood pressure’ and that patient j has ’low blood pressure’ (say through interacting with an app), and we obtain a useful
ranking without any need for a doctor to painstakingly label datasets.

To learn W, a scoring function is needed, and we use the one given in the paper:

`W(qi, q
+
i , q

−
i ) ≡ max(0, 1− SW(qi, q

+
i ) + SW(qi, q

−
i ))

The global loss over the database D is defined as LW ≡
∑

(qi,q
+
i ,q

−
i )∈D3 `W(qi, q

+
i , q

−
i ).

Minimization of this loss is done with the online passive aggressive algorithm similar to that in [19]. First, W0 is
initialized as the d× d identity matrix. Then, on each step of the algorithm, a triplet (qi, q

+
i , q

−
i ) ∈ D3 is randomly

drawn, and the following optimization problem is solved:

Wi = argminW||W −Wi−1||2Fro + Cξ s.t. `W(qi, q
+
i , q

−
i ) ≤ ξ and ξ ≥ 0. (1)

This is a convex problem with a soft-margin and admits an analytical solution. We skip the derivations, but point out
that it can be done with lagrange multipliers, as shown in [19] and [18]. Concretely, we just need to make the following
updates:

Vi = [q1i (q+i − q
−
i ), ..., qdi (q+i − q

−
i )]T (2)

τ = min

{
C,
`Wi−1(qi, q

+
i , q

−
i )

||Vi||2

}
(3)

Wi = Wi−1 + τVi. (4)

These updates can largely be seen as online stochastic gradient descent, with a gradient Vi with step-size τ . The
parameter C is an aggressiveness parameter (hence passive-aggressive learner – the passive part is from the choice
of loss function that is passive when predictions are correct), which enforces how quickly the algorithm learns W.
We also follow the advice given in [18], and add a projection step to force W after learning. This can be done with
any standard method, but the authors recommend to use the eigenvalue decomposition: W = VDVT and forcing the
eigenvalue matrix D to have positive values.

The next question is: how do we generate (qi, q
+
i , q

−
i )? With a lack of domain knowledge, relative rankings suffice.

However, one important thing to note wrt blood pressure is that the medical community at large considers blood pressure
to be an ordinal categorical variable. The following bullet point list comes from American College of Cardiology [20],
giving new guidelines on blood pressure:

• Normal: Less than 120/80 mm Hg;
• Elevated: Systolic between 120-129 and diastolic less than 80;
• Stage 1: Systolic between 130-139 or diastolic between 80-89;
• Stage 2: Systolic at least 140 or diastolic at least 90 mm Hg;
• Hypertensive crisis: Systolic over 180 and/or diastolic over 120, with patients needing prompt changes in

medication if there are no other indications of problems, or immediate hospitalization if there are signs of
organ damage.

Ultimately we would like this order to be maintained. Thankfully, a simple euclidean distance of the blood pressure
vectors yi ∈ R2 maintains the total order. While we do not report the results here, we would like to point out that
categorical encodings with yi ∈ {0, 1, 2, 3, 4} (e.g., yi = 0 means ‘normal" and yi = 3 means ‘stage 1’) were
competitive. While worse than having exact ground truth, this encoding scheme easily defeats the baseline we consider
later. The ease of labeling large amounts of data with a relative ranking rather than taking exact ground truth remains a
strength of our approach.
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2.2.4 Experiments

The objective of performing experiments is to validate the accuracy of the device we developed and also compare the
blood pressure measurements with the work from Chandrasekhar et al, the cuff-based device that is our ground truth,
and the veracity of our approaches.

Dataset Collection. We used the device from this work (the SmartBP) combined with a cuff-based device (Omron 7
Series Wireless Upper Arm Blood Pressure Monitor) which is our ground truth. The participant needed to be seated
with symmetric body position, and at least 5 minutes rested. The procedure for the data acquisition occurred as follows:
(1) the participant after understanding how the device works and performed two practice sessions with the SmartBP
device, places the index finger (top knuckle) on the sensing area, and when the timer starts, there is 30 seconds of data
acquisition with the patient steady and slowly increasing the applied pressure on the sensing area. Once the 30 seconds
are over, the algorithm shows the estimated blood pressure, the user removes the finger from the device and we start
measuring the blood pressure from the ground truth.

We obtained two datasets. The first is a dataset of 62 measurements from 5 volunteers. Their oscillometric signals
were recorded with our device, and their ground truth labels obtained directly after. The second is a publicly available
dataset from IEEE DataPort [21], which contains 350 oscillometric measurements from cuff-devices, as well as the
corresponding estimated blood pressures. In order to address the scarcity and lack of variety in our data, we use this
extra dataset to supplement our own, giving a total of 412 PPG signals, and blood pressure labels. While not drawn from
the same distribution, the justification is that the oscillometric finger pressing method is analagous to the oscillometric
recordings of the cuff device. Thus, we can think of the extra data set as a way to inject bias into our models (thus
allowing learning), as well as variance in our labels (thus getting an estimate of generalization error). Put another way,
combining the two data sets can be justified as a form of transfer learning. The advantage of this approach is that it
empirically shows that good predictions can be made using data from other sources – and not just data recorded on our
device. This helps alleviate what is commonly called a cold start problem in the machine learning community.

Data Preprocessing and Modeling. Before doing any learning, the data is preprocessed. All signals are centered
with zero mean and unit variance, then passed through a 2nd order butterworth bandpass filter, with cutoff frequencies
of [0.8, 3.5] Hz. Centering and scaling was primarily to avoid numerical issues with the butterworth filter.

We compare 5 methods for blood pressure estimation. First, is the baseline oscillometric algorithm described in the
software section of [2]. We follow their algorithm almost exactly, up to some minor differences in the filtering and
preprocessing of the signals, to accomodate the differences between our device and theirs.

Second, we utilize a Random Forest. While in principle, a random forest could predict a the blood pressure yi ∈ R2

directly from a ppg signal xi ∈ Rd, this has been shown to not work well [13]. Instead, we slice each signal xi into
10 ‘windows’ x̃i1 , ..., x̃i10 , and from each window, extract a vector zij of features. In particular, we extract the mean,
standard deviation, min, max, skew, kurtosis, difference in start and end value, the most common spectral frequency, as
well as autocorrelation coefficients on the first 4 lags. Thus each PPG signal xi results a feature vector vi with 120
features. Abusing notation, we construct the data set X̃ = [v1, ...,v412]T with ground truth labels Y = [y1, ...,y412]T ,
and the random forest is learned using 100 random trees and no limit on max-depth, the number of estimators is chosen
by cross-validation.

Third, since we are interested in ranking problem, we also consider a k-Nearest Neighbor model using the extracted
features X̃, and the standard Euclidean distance. While we don’t expect this method to beat the random forest, it will
provide a suitable baseline for our next two methods. Note that X̃ is normalized to the real-valued interval [0, 1] to
allow fair comparison by Euclidean distance. We choose K = 10 neighbors by leave-one-out cross-validation.

Finally, we consider two versions of RankBP. In the first version, RankBP uses the extracted feature vectors X̃ (after
normalization), with an aggressiveness parameter of C = 0.10. The second version of RankBP uses simply the PPG
signals themselves: X. To accommodate for differences in length, a minor resampling step is done to ensure all PPG
signals have the same length. In general, we recommend sampling at a higher granularity than intended by the model,
then downsampling to the needed size. Training was done very fast, with roughly 2000 samples drawn from the data set
(roughly equivalent to 5 entire passes with gradient descent – we noticed more iterations destroyed results).

Evaluation. We are interested in several metrics:

• Avg. Bias of each blood pressure measurement j: µj = 1
N

∑N
i=1 yij − ŷij . In particular, systolic and diastolic

blood pressure.

• Std. Deviations of each bias: σj =

√∑
i(yij−ŷij )−µj

N−1
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• Precision: tp
tp+fn , Recall : tp

tp+fn , F1-score: tp
tp+(fp+fn)/2 .

Notice that the last three are classification metrics. The classification is made by first predicting a real-valued blood
pressure ŷi ∈ R2 for the ith signal. Then the prediction is compared to the recommendations given by the ACC,
and a class in {0, 1, 2, 3, 4} is predicted. These class predictions are compared to the class labels derived from the
ground truth BP measurements yi. The classification is then binarized: yi 7→ 0 if yi ≤ 1 and otherwise yi 7→ 1. Thus
classification is made on the basis of whether someone has stage 1 BP or higher.

We justify this choice as follows: when a doctor takes a patients blood pressure, they do not care about whether a patient
has 123/82 mmHg, or 121/79 mmHg. They care whether the patient has 123/82 mmHg, or 138/96 mmHg. Thus
fine-tuned ‘granularity’ is less important, but whatever prediction our model makes, it must be mostly correct, most of
the time. One could argue that this is really a classification problem, but it is unlikely doctors would trust a learning
algorithm that simply outputs “normal" or “hypertensive" without some measurement of how ‘close’ the patient is to
“normal" or “hypertensive". Thus, we opt for this approach, as it is more realistic to the goals of medical professionals,
even if it is less clean to analyze.

We can interpret the classification metrics as follows: precision is the positive predictive value: the probability that the
model is correct when it says a patient has "high blood pressure". The recall is the true positive rate: the rate at which
people are correctly identified as having high blood pressure. The F1 score is a balance of both (higher is better).

For our statistical analysis of the results, we take a Bayesian point of view: we compute the posterior distribution of the
bias estimates using a conjugate prior over a multivariate normal distribution. Using this, we compute 95% credible
intervals for the bias: 0.95 = p(` < µ < u ;D,Θ), and the posterior probabilities that the machine learning methods
saw a real improved upon the baseline wrt to the bias: p(||µi|| < ||µbaseline|| ;D,Θ) where µi is the bias of the ith
algorithm. This can be thought of as a simple AB-test to compare algorithm performance.

Note on evaluation. To be clear, it should be said that while the methods were trained with both datasets, testing
was done with our personal dataset collected from volunteers. The extra dataset is used as a kind of transfer learning –
each model sees more data and with larger variation, and so learns the neccesary patterns, but we evaluate our methods
on our ‘real’ data. All results that follow are computed in this way, with leave-one-out cross validation, and bayesian
posterior updates with weak priors.

2.3 Results

The statistics were computed using leave-one-out cross validation, a frequentist method of estimating generalization
error, in each case. While there is some correlation in our voluntarily collected data set with repeated measurements,
we believe the inclusion of the extra data as a form of transfer learning will make our results more robust and reduce
overfitting.

Our results were both surprising and unsurprising in various ways.

First, each machine learning method was able to handily beat the baseline method, this includes the versions of RankBP
which used categorical labels to encode the triplets (qi, q

+
i , q

−
i ) instead of real-valued labels. However, those versions

of the model were the weakest so far – likely from lack of data – so we omit them.

What’s interesting is that our implementation of the baseline algorithm from [2] does slightly worse: they reported
biases of 3.3/− 5.6 mmHg for systolic/diastolic and smaller standard deviations. However, upon close inspection of
their paper, we see that a crucial difference between their algorithm and ours is that their algorithm can repeatedly ask
patients to start-over with the estimation process if the algorithm deems their data to be poor quality. This makes sense,
as we had to throw out nearly 20% of the predictions from the baseline algorithm, due to numerical stability issues
arising from noise in the data (even after filtering). Because the methods described in [2] rely on essentially computing
an oscillogram, then using ratios of a fitted curve to estimate blood pressure, it makes sense that even small amounts
of noise jeopardize this process. Despite this, the precision and recall of their method compares well to the machine
learning methods, indicating that the baseline algorithm is “wrong, but in the right direction".

On the other hand, the random forest does as expected, it achieves levels of bias and standard deviation lower than in
[2]. It also gives the some of the highest precision, recall, and F1 score of all the methods tried. This was expected, as it
was shown in prior work that the random forest excels on this class of problem [13].

Perhaps one of the more surprising results is the performance of k-nearest neighbors. We chose this model as a simple
baseline to compare with our RankBP method, but the results were stunning: It handily is one of the best methods
for this problem, with very low biases and errors. However, the precision and recall is lacking compared to the other
methods. This suggests that, while ‘accurate’ in an absolute sense, the model is ‘inaccurate‘ in how well it identifies
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Figure 5: (a) An ideal oscillogram with the baseline method. (b) An example of what happens when an unstable signal
is passed to the oscillogram. This prediction had to be thrown out, for obvious reasons.

whether people really have high blood pressure or not. This would improve with data, as it is well known that k-nearest
neighbors converges to the Bayes error rate in the limit of data. This model has the second highest probability of a real
improvement (in terms of bias) over the baseline at 97%.

Figure 6: A visual representation of the posterior distribution of the systolic and diastolic biases, estimated after learning
the algorithms. We only plot a subset of the models, for simplicity. Closer and ‘tighter’ to 0 is better.

Finally, the results of RankBP are encouraging, with very low biases and acceptable standard deviations. What is most
heartening is the very passable recall rate of RankBP2, which uses the (normalized) data vectors X instead of the
extracted feature vectors X̃. What’s most encouraging is the extremely low systolic and diastolic bias of the method.
Figure 2.3 gives most of the relevant results: the 95% central credible intervals are tight, and the probability of a real
improvement is 97.2%.

Training of RankBP One noticable effect of RankBP was its efficiency. RankBP converges (wrt our loss functions)
in roughly 2000 iterations on a dataset of 412 signals. Since each iteration is a stochastic gradient descent update, this
is faster than it would seem: roughly only 5 passes over the data was needed to achieve good results. In the future,
when SmartBP is an actual phone application, this has distinct advantages: noisy gradients can be computed on an
individuals phone, then messaged to a central location. The model updates can then be messaged out, resulting in
potentially personalized online learning of biomedical information retrieval systems. This can be a huge benefit as the
hypothetical user base of SmartBP grows.

3 Milestones

In this section we briefly describe our milestones, what we achieved, and what we did not.

1. We achieved building our Minimum Viable Product: building a small device that can estimate blood pressure
using just an oscillometric signal from the finger.
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Method Systolic Bias Diastolic Bias Systolic Std.Dev Diastolic Std.Dev Precision Recall F1

Baseline -6.936 -5.553 18.604 15.979 0.642 0.692 0.667
RF -3.323 3.930 13.712 6.855 0.700 0.778 0.736
KNN -2.483 1.020 13.023 7.705 0.619 0.722 0.666
RankBP -2.105 6.655 12.761 8.314 0.705 0.666 0.685
RankBP2 -0.353 1.040 13.680 7.923 0.642 0.750 0.692

Figure 7: The results of our experiments. Care should be taken when interpreting the baseline method: nearly 20% of
the predictions had to be removed due to numerical problems.

Method Sys. Bias C.I. Dia. Bias C.I. Sys. Prob. Improve Dia. Prob. Improve Prob. Overall Improve

Baseline [-11.535, -2.34] [-9.332, -1.839] N/A N/A N/A
RF [-6.053, -0.449] [2.544, 5.341] 0.866 0.749 0.838
KNN [-5.318, 0.183] [-0.577, 2.586] 0.991 0.918 0.970
RankBP [-4.873, 0.599] [4.817, 8.419] 0.947 0.345 0.699
RankBP2 [-3.103, 2.576] [-3.103, 2.576] 0.973 0.959 0.972

Figure 8: (a) & (b) The 95% central credible intervals on the biases for systolic and diastolic mmHg, respectively. (c)
& (d) The probability of algorithm improvement: p(|µi| < |µbaseline| |D,Θ) where Θ are the posterior parameters of
the multivariate gaussian distribution. (e) Probability of an overall improvement: [(||µ|| < ||µbaseline|| |D,Θ).

2. We achieved replicating prior work: our baseline method had comparable levels of bias to prior work. While
our standard deviations were inflated, we believe this was because our implementation was not as willing to
make users try multiple times to obtain a good measurement.

3. We achieved a novel adaptation of the prior work. We implemented several machine learning methods, two of
them completely standard (Random Forests and KNN), and one of them known in the greater literature, but a
novel take on the blood pressure estimation problem. Estimation via information retrieval, RankBP. We believe
the latter approach will be more generally useful for other forms of estimation and search in telemedicine.

4. We did not achieve a smartphone application. While we initially wanted to try to achieve this as a stretch goal,
we realized that such a task would take at least another 10-20 weeks, and likely more collaborators, as these
authors are not familiar with building smartphone applications.

• What to do differently: It would be more pertinent to start the project from scratch with a smartphone
application in mind, rather than building a device, and hoping the smartphone application would somehow
‘come together’. On the other hand, we have learned a great deal about what makes this idea work, and
how it could be improved.

5. We did not achieve at least one hard deadline. In particular, this paper took at least 7 more hours to finish than
we thought.

• What happened? There was a very serious pivot right up to the deadline. The authors realized that
a fundamental component in the data-collection algorithm was incorrect, and leading to very noisy,
unusable results when trying the device on those who were not the authors. This had to be corrected, and
required a significant time investment. Since the data collection phase was wrong, all of our prior results
were wrong. We had to fix the problem, then collect data all over again, then analyze it all over again.

• What else happened? The idea of RankBP was another big pivot in design. Close to the deadline, while
trying a variety of machine learning methods, viewing the problem as a classification problem, it became
obvious that no doctor or patient would accept an algorithm that simply answers “normal" or “not normal".
The idea of RankBP was cooked up in the final days leading to our deadline. While late with the paper,
we are happy we did it. The method is modern, interesting, powerful, scalable, and generalizable.

• How could we have avoided this? This is a difficult question. On the one hand, we could not have
predicted such a critical bug, so close to the deadline. On the other hand, we did not have a robust plan
for feature testing of the hardware. Likely, we could have avoided the issue had we extensively tested
hardware before moving on to data-modeling.
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4 Conclusion

This paper is the result of a 10-week long project to replicate prior work. While we named our project SmartBP, we
really were replicating the work of Chandrasekhar et al. in [2], and then adding our own twist, which we call RankBP.

While the learning algorithm for RankBP is not new, we have applied it to a completely novel domain: blood pressure
estimation through information retrieval in telemedicine. Our experiments provide a robust set of evidence that the
improvements we saw over the baseline algorithm are real, and not a result of a statistical anamoly. We believe this type
of learning scheme can also be applied more generally: information retrieval can be used to obtain relevant metrics,
information, and predictions for any biomedical signal, and since the ranking algorithm learns in an efficient online
manner, costly model training steps may be avoided. Moreover, the model is able to learn a similarity matrix W using
approximate, relative ranking functions. This will be a boon in the early phases of telemedicine, where data is abound,
but data labels are not. A doctor could simply provide noisy updates of “doing better than before" or “blood pressure is
increasing over time”, and that is relevant information for methods like RankBP.

Ultimately, we were able to achieve most of our goals, though not without some bloodshed - there were serious mishaps
along the way with the construction and implementation of this device. However, we feel the project was a success, and
hope that it can be iterated upon in the future, either by ourselves or others.
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