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1.0 Abstract  
Researchers often want to track wildlife to gather animal movement patterns, population size, and other 

valuable statistics. The main inconvenience with traditional methods is traversing difficult terrain, some of which 
can take an hour to walk a mile. The Radio Collar Tracker Project is an ongoing project that addresses this issue 
using an aerial drone to track animals tagged with radio collars. Some of the project’s weaknesses were improved 
upon this quarter. This project update consists of creation of a radio collar emulator, GPS parsing scripts, as well as 
a new user-interface. This paper will cover the improvements made to previous iterations of the project as well as 
guidance on how the product operates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        



 

2.0 Introduction  
Researchers often want to tag and release animals into the wild and track them as time goes on to gather 

animal movement patterns, population size, and other valuable statistics. To track the animals, small radio collars 
are affixed to their bodies which emit short tones periodically at a given frequency. Using traditional methodology, 
researchers will attempt to find the animals using a large hand-held antenna several times throughout the course of a 
few weeks or less. In some places, such as the Cayman Islands and the Dominican Republic, the wilderness is tough 
terrain to traverse, potentially taking more than an hour to walk just a mile. The Radio Collar Tracker project is 
designed to address this terrestrial problem by taking to the skies. We use a quadcopter that is autonomously flown 
over the area suspected of containing the animals of interest. The system of electronics on the copter listens to and 
aggregates pings transmitted by the animals’ radio collars including the copter’s current GPS location when a ping is 
heard. The animals’ positions are triangulated from the signal strength of pings heard at recorded GPS locations. 

Previous iterations of the project have had issues with radio collar detection range and the copter platform 
handling gusty winds. One of the improvements made this quarter is focused on utilizing a new copter platform 
(3DR Solo) that is has more robust flight even in windy conditions. Further references to the new 3DR Solo 
platform will be condensed to “the Solo”. Attempts have been made to access the internal GPS unit on the Solo, but 
this has resulted in a couple “bricked” copters. Using this problem as inspiration, we decided to go with a more 
loosely coupled approach using an external GPS module which has the added benefit that it can be easily moved to 
any copter with minimal effort. A new user interface was built for the system on the copter to display important 
status information and allow user input to quickly change between standby actively logging states. The last 
improvement to the project focuses on accurately emulating a radio collar at low power and using the exact same 
waveform. Due to lack of time and the likelihood that it would not prove to be effective in increasing detection 
range while maintaining the same energy consumption, we did not test different transmission techniques. This 
research should be easy to extend from the work done this quarter if it is deemed valuable in future work. 

Work done relating to the external GPS module is in section 3.1. Contributions to the user-interface 
including a web interface are in section 3.2. The collar emulator is covered in section 3.3. The emulator is broken up 
into an signal analysis part and signal generation part. 
 
 
 
 
 
 
 
 
 
 
 
 

        



 

3.0 Technical Material 
Due to the divided project focuses under the RCT project, the technical portion of this write up will be divided into 
three subsections: (1) Ublox M8N GPS Module (2) Drone User Interface and (3) Radio Collar Emulator. 
 
3.1 Ublox M8N GPS Module  

This subsection of the RCT project consists of Python scripts parsing the binary stream of data sent via 
serial from the Ublox M8N GPS module. Previous iterations of the RCT utilized an integrated GPS chip built into 
the drone platform, the Solo, itself. The blocking issue with these internal GPS access attempts was consistent loss 
of autopilot functionality. As a result, an external GPS module is now incorporated onto the RCT platform to 
provide a modular GPS implementation with the Intel Joule, separate from any drone hardware. Future iterations of 
the RCT may now replace the drone without GPS considerations. The system architecture including the new GPS 
module can be seen below in Figure 3-1.  

 

 
Figure 3-1. System Architecture with GPS Module 

 
Two python scripts were written in order to handle two distinct requirements: (1) data logging for RF ping 

correlation and (2) 3D GPS fix check. Both of these scripts utilize the open source python library pyUblox (see 
Section 6.0 References for a github link) to handle the raw serial stream and to group the binary values into message 
fields derived from the ublox M8 protocol. The first script, ubx_gps_logger.py, parses the ublox message, 
NAV-PVT (Position Velocity Time)  for the following fields: timestamp, latitude, longitude, altitude, velocity, and 
heading of vehicle. These field values are recorded in an log within an output directory specified as a command line 
argument. In a field implementation, GPS timestamped position from these logs will be correlated with radio collar 
pings to locate the animals under investigation. The second script, gpsFix.py, is called from the bash startup script 
that performs status checks to indicate operational readiness and that data logging can begin. The process started by 

        



 

gpsFix.py will only be killed if 3D GPS fix is acquired, thus the bash startup script is dependent on its success 
before executing the next line. A high-level flowchart of the ublox parsing process is depicted below in Figure 3-2.  

 
Figure 3-2. Parsing Flowchart 

 
The GPS data logging script was demoed with the Ublox M8N during a drive around the UCSD campus. 

Utilizing the python library gmplot (see section 6.0 References for the github link), an HTML file was generated 
utilizing the position data parsed and recorded during the drive. This HTML file included plotted lines from the 
position data on top of a google map. A screenshot from this HTML file opened in a web browser is depicted below 
in Figure 3-3. 
 

 
Figure 3-3. Screenshot of HTML-Generated Google Map from GPS Parsing Demo 

 
3.2 Drone User Interface 

This section of the RCT project mainly consisted of giving the drone better overall functionality and 
user-friendliness. In previous iterations of the RCT project, there were instructions to detail every single procedure 
required for a simple step such as how to start the drone, how to start data logging, how to stop the drone, etc. 
Although these previous iterations were useable, the design of it and the process necessary was rather unintuitive. 
The device is originally meant for researchers and biologists out in the wilderness where internet isn’t necessary 

        



 

readily available; so, error handling is rather difficult should they occur. Aside from the complicated start up 
procedures, if the system were to fail the start up procedure debugging the specific blocking issue was a hassle as 
well. The previous iteration relied only on a single LED light that lit up if start-up was successful or not. 

The first step towards simplifying this process was designing a new status check script which would 
condense all the checks and requirements necessary to start the drone. The state machine of the process can be 
modeled by the following diagram, Figure 3-3. 

 
Figure 3-4. State machine of Status Checks 

 
In the above figure, the final script of​ rct_status.sh​, the following five requirements of a writable output 

directory, a sane output directory, enough available disk space, and a verified successfully flashed SDR (Software 
Defined Radio), and 3D GPS fix (comes from GPS parsing script).. All of these checks run sequentially in the script 
and should any of them fail and error is thrown and the status script exits. Only when all of these checks are 
successfully completed, then the user is notified that he or she may begin data logging and the quadcopter awaits for 
the start command. When data logging begins, the status script terminates while data logging happens and will 
resume once data logging is ended by the user.  

On top of this status script, two different user interfaces were implemented to a hardware interface and a 
cyber interface. The hardware interface serves as the barebones for the script since it was the simplest and most 
robust design. On the PCB (Printed Circuit Board), there are 5 different LED’s implemented along with a single 
switch. Each LED used were KINGBRIGHT LED’s and their mappings are: HYPERRED (orange) for a sane output 
directory, BLUE for a verified functional SDR, GREEN for ensuring there’s available disk space, YELLOW for a 
writable output directory, and RED for a GPS lock found. The PCB was printed with the specifications of a 10mm 
by 85mm due to the Solo being such a light and compact quadcopter.  

The LED circuit is implemented as a barebones physical indication of status checks. In order to extend 
upon this interface with the field scientist in mind, a graphical user interface (GUI) is now accessible from any web 
browser wirelessly connected to the Intel Joule. By simply typing in the Intel Joule’s statically assigned IP address 
for its wireless network in the address bar, a simple and intuitive web interface appears. All five status checks from 
bash UI script are included, as well as the toggle switch to start and stop data logging. The web interface is depicted 
below in Figure 3-4.  

        



 

 
Figure 3-5. Intel Joule Web Interface 

 
 A significant portion of the efforts for this interface were configuration based. The Intel Joule and its linux 

distribution, Ostro, have relatively limited documentation and a lack of a package manager, causing blocking issues 
and delays when installing multiple components from source. After extensive configuration and overcoming the web 
development learning curve, the web interface V1 was completed. It consists of an Apache HTTP server, PHP 
extension scripts, and javascript for dynamic interactions. This system architecture for the web interface is depicted 
below in Figure 3-5.  

 
Figure 3-6. Web Interface System Architecture 

 
A simple text file on the Intel Joule, Status.txt, contains a six digit number. The first 5 represent the LOW/HIGH 
state of the five status checks and the last digit is for the toggle switch. This text file is checked by the index.php to 
initially generate the web page, and then update.js utilizes status.php to continue status checks on the Intel Joule. To 
begin data logging, update.js waits for an “onclick” action on the web page which will then overwrite the last digit 
of Status.txt to its appropriate OFF/ON value via toggle.php. In an operational scenario, status.txt will also be 
checked and overwritten by the bash UI script to maintain consistency with the LED interface. Ultimately, this web 
interface is a foundation for future iterations to improve the front end and extend the backend capabilities e.g. real 
time processing of GPS and radio collar ping data.  

        



 

 
3.3 Radio Collar Emulator  

Building the radio collar emulator included creation of a block path in GNURadio companion that would 
allow emulation and analysis of the radio collar’s transmitting signal. This includes characteristics such as 
amplitude, frequency, and pulse width. Some of the tools we used were the USRP-2920, a copper dipole antenna, 
and GNURadio Companion.  

In order to recreate the signal in GNURadio, we had to initially read its existing waveform. The radio collar 
transmits a short pulse around every 1.5 seconds. Based on our sampling rate, we wrote binary 16-bit “1” and “0” 
values to a file. The number of “1”s written depended on how many samples were in 50 ms while the rest of the 
values were “0”s. Since one of the goals of the radio collar emulator was to have the ability to transmit different 
waveforms in order to test reduce the power consumption, this method was ineffective. Thus, we had to create a 
custom block in order to extend the emulator to be able to transmit different waveforms. Furthermore, after 
analyzing the collar’s signal more in depth, we found out that it transmits a 40 millisecond short pulse every 1.33 
seconds, which was hard to mimic with the previous method. Since there are no blocks in GNURadio that could 
perform the Pulse Width Modulation technique, we had to create our own in GNURadio. The block keeps a count of 
time to see when every 1.33 seconds occur and allows the incoming signal to pass through for about 40 
milliseconds. The parameters of the block are the time length of the pulse (High Time) and the time length between 
each pulse (Off Time). Shown in Figure 3-3 is the block path from GNURadio Companion. Signal Source block 
allows to choose the waveform to transmit, along with frequency, amplitude and the sample rate. The middle block 
is the custom block that we created that mimics the Pulse Width Modulation technique, and it allowing the user to 
choose the duty cycle of the signal. The block on the right sinks the incoming signal to the transmitter (USRP). 

 
Figure 3-7. Transmitting Block Path from GNURadio Companion 

 
Before we can even transmit the desired signal, we needed to first understand the signal behavior itself. We 

decided upon four signal characteristics that would accurately emulate a radio collar. These characteristics are pulse 
width, pulse period, frequency content, and amplitude profile. They are consecutively depicted in Figure 3-8, 3-9, 
3-10, and 3-11 below. The radio collar we were testing with this quarter is a falcon collar that operates at a 
frequency of 216.025 MHz. The National Instruments USRP-2029 was used as the receiver with a gain of 0 and 
center frequency of 216MHz, so the recorded collar signal should appear to be a 25kHz wave. Signal recording was 
implemented using GNURadio at a sampling frequency of 640kHz. The figures came from several seconds of 
recorded data from the collar that was as close as possible to the receiver (almost touching). All figures were created 
using the matplotlib library in python 3.6.1. 

 

        



 

 
Figure 3-8. Measuring Pulse Width 

 
The radio collars want to be as low power as possible, so they transmit a very short pulse periodically at a 

known frequency. In the case of the falcon collar, the transmitted frequency is 216.025MHz with a pulse width of 
40ms. 

 
Figure 3-9. Measuring Pulse Period 

 
The pulse period is simply the time between the start of one pulse to the start of the next pulse. Ideally this 

is exactly the same for every pair of pulses. For the falcon collar, the time between any pair of our measured pulses 
was within 1/1000 seconds which is good. 

        



 

 
Figure 3-10. Measuring Frequency Content 

 
The frequency content metric is focused on what frequencies are actually transmitted from the radio collar. 

An ideal transmitter in this case would have all of its power focused at exactly one frequency, but this is not the case 
in practice. The transmitted signal will generally power transmitted over some amount bandwidth. In the case above, 
the signal is present at a 25kHz offset as expected, but it has a width of around +/- 100Hz. 

 
Figure 3-11. Measuring Amplitude Profile 

 
The amplitude profile is essentially just the magnitude of the recorded complex (IQ) data plotted over time. 

This will be most useful when looking at the sampling range within the start and end of a single pulse. From this we 

        



 

can try to accurately mimic even the small fluctuations in power at every point in time. This seems highly 
susceptible to the noise in the environment though, so it’s possible some filtering may be useful here before 
transmitting. The downside of filtering is that certain small characteristics of the original waveform may be lost. 
Determining its impact would likely require some more extensive field testing. If these small characteristics make 
little difference to our detection, then a much simpler approach would be to average the amplitude of the pulse and 
transmit the result as our emulated pulse. 

There are python scripts to help with this analysis as well as do the plotting. They require a good amount of 
technical skill and understanding to utilize as there are a number of parts the the analysis that seemed difficult to 
completely generalize. As such, they would only be used by our engineers to analyze radio collars. In our repo is the 
folder “Collar_Emulator/analysis” that contains the two scripts useful for analysis. The analyzeSignal.py script plots 
the recorded collar data in amplitude of the signal vs time in samples. fftSignal.py is the other useful script that does 
a bunch of short time fourier transformations and plots the amplitude vs frequency in 50 Hz bins. 

 
 
 
 
 
 
 
 
 
 
 

 
 

  

        



 

4.0 Milestones 
The GPS portion of this project was divided into two sub-milestones: (1) completion of two functional 

parsing scripts for logging and GPS fix utilizing an open source ublox python library and (2) integration and testing 
of the scripts with the Intel Joule. Initially, a significant amount of time was spent researching a python library for 
the proprietary ublox protocol, significantly more uncommon than the NMEA standard. The library included 
numerous scripts and tools, however, only the ublox.py script was needed to convert raw binary values into parsable 
string formats. The ublox.py script did not include the NAV-PVT message that was desired so a new message had to 
be defined, configured, and tested. This first milestone was completed on time halfway through the quarter, which 
enabled early testing with ping correlation scripts utilized in earlier RCT iterations. The results were satisfactory.  

At the initial start of this quarter, the UI script had originally been paced as completing the tasks of: having 
a fully functional UI-script (status script) by week 6, having a fully functional PCB by week 7, and allocating the 
rest of the time to the web interface portion. Overall, everything stayed on track. There were some difficulties at the 
very start of the project with familiarizing the members with the project and the overall architecture of it as well as 
different scripting languages. Aside from those obstacles everything progressed smoothly. The initial time allocation 
for creating the status script was 3 weeks (until week 6) and that was completed on time. After that came the PCB 
design. The PCB design was a little bit rushed and tasks had to be delegated wisely but in the end the PCB came out 
on time. As for the web interface, it actually progressed further than we had expected. Initially we had  thought that 
we would have at least a framework set up but instead we were able to create a (simply) fully functional web 
interface to interact with the quadcopter and display all sorts of notifications and updates. 

For the radio collar emulator’s first milestone, we started by getting familiar with GNURadio in order for 
us to recreate the radio collar’s signal. We were able to analyze and regenerate the radio collar’s signal by week 3. 
Based on our sampling rate we obtained, we wrote binary 16-bit “1” and “0” values to a file that GNURadio read to 
transmit. This works, but is not very configurable. So for our second milestone, we created a custom block in 
GNURadio that will allow us to tweak our signal as needed. The custom block mimics the Pulse Width Modulation 
technique. After implementing more precise parameters to the block, we notice that the block would skip some of 
the pulses that should be outputted. We think this may be due to the performance of the computer performance since 
it would work for lower sampling rates. The other constraint we had was the limited knowledge in digital signal 
processing. But with the help of Nathan, Google and Curt Schurgers, we were able to complete some of the 
milestones we set out for ourselves.  

Initially, we expected to test the emulator towards reducing power consumption and increasing the collar’s 
detection range by testing different combinations of waveform, pulse width, and gain. But due to time constraints, 
we weren’t able to get to a point to try this part out. With the help of the documentation we created for this project, 
this can be achieved in the future.  
 

 

 
 

        



 

5.0 Conclusion  
In this day and age, as people grow into a global mindset in terms of taking care of our planet, 

understanding how humans affect the environment has become more important than ever. Learning about wildlife is 
one of these important topics that is ever urgent especially as more and more animals are added to the endangered 
list. Being able to track these animals plays a large part in beginning to comprehend how our decisions and other 
factors affect wildlife populations. Researchers from places like the San Diego Zoo take a significant interest in this 
area and anything we can do to make the process of tracking animals easier is a big help to the cause. Enabling 
researchers to use a drone to cover much of the hazardous terrain that would otherwise have to be covered on foot 
should save time and be safer. The Radio Collar Tracker has had some success in previous field deployments and 
will likely continue for years to come. As such, the improvements made this quarter were focused on ensuring the 
project will be successful in future iterations. 

The GPS pipeline we have developed uses an external GPS module that can be easily moved to another 
platform as needed. This was a great benefit that come from deciding not to use the internal GPS of our current 
copter. Future iterations of the project should be able to treat this functionality almost as a given. 

The user interface is a significant improvement from the previous iteration that used a single status LED. 
The backend of the web interface includes various error checks and provides status for each to the front end to 
clearly see any issues with the logging portion of the system. It is also easy to understand for non-technical people 
with large icons and clear messages. Adding in the extensibility of our user interface and we have a lot of added 
value for now as well as future work. 

Lastly, the collar emulator was a useful improvement for a few reasons. One, we often have limited access 
to fully functioning collars to test. A few months before the field deployment we may receive one or two collars to 
test with. Many collars have batteries designed to last three weeks and have a shelf life of around six months. As 
such, after the deployment we may not even have collars to test with. Having a consistent baseline to test with using 
the USRP helps to avoid all these issues because we need the collar to be functioning just long enough for us to 
record it after which we’ll be able to emulate it for all of our further testing. That makes this a really nice tool to 
have going forward with this project as well. 
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