PYNQ Radio — Final Report

Team Members: Harveen Kaur, Rajat Gupta, Rohit Kulkarni, Vishwesh Rege

1 ABSTRACT:

General purpose processors (commonly called CPUs) are employed in a number of applications
from smartphones to even cars. However, these processors can only provide limited performance
and consume a lot of power. Thus, recently there has been significant interest in employing
alternative platforms for applications that require very high performance and energy efficiency.
One such platform is Field Programmable Gate Array (FPGA), which allows us to build dedicated
hardware for a particular application. FPGAs are tailored for a particular application and can do
work parallelly, leading to much better efficiency. Our project aims to take one such heavy duty
application (FM radio receiver) and "accelerate" it using a combination of general purpose
processor and FPGA on the same chip. This chip is part of a board called the PYNQ board and
thus, we call our project PYNQ Radio.

2 INTRODUCTION:

Our project entails taking a computationally intensive software application, identifying the
compute-heavy part, and "offload" that part to dedicated hardware (FPGA), in order to make the
resulting application much more efficient in terms of computation and energy. The final
implementation has the lighter part running in software and the compute-intensive part running
on dedicated hardware, i.e. the application would run on a heterogenous platform.

One such heterogenous platform is the Xilinx Zynq [1] - which integrates a general-purpose
processor (ARM CPU) with an FPGA from Xilinx. FPGAs or Field Programmable Gate Arrays can
be thought of a bunch of hardware circuits that are "programmable”, i.e. we can define the
behavior of these circuits using programming languages such as Verilog or C/C++. Once the
behavior is defined, the FPGA may be "programmed". After programming the FPGA, it exclusively
executes the application it was programmed for. Thus, there is a lot more scope for parallelism
and efficient design (tailored to the application) while using an FPGA. This leads to significant
performance and energy benefits, and is known as "hardware acceleration”.

In recent years, a number of applications have been accelerated using FPGAs. Due to their
performance and energy efficiency, FPGAs can be a great addition to embedded applications.
However, they have a steep learning curve, especially for software developers. PYNQ [2], or
Python for Zynq, is an open source project from Xilinx which aims at overcoming this limitation.
PYNQ is designed to abstract the low-level details of hardware programming, and instead present
a relatively intuitive programming model for embedded systems designers and software
developers looking to explore hardware acceleration. The PYNQ open source community is
actively trying to create a library of hardware blocks that may be easily integrated with software
applications. As mentioned before, PYNQ is based on the heterogenous Zynq platform by Xilinx,
which contains an ARM processor and a Xilinx FPGA on the same chip.

In our project, we decided to use the PYNQ board, since it is a new platform and has a growing
community of hardware developers contributing to make hardware acceleration more accessible.
Thus, we used the PYNQ platform to accelerate a computationally intensive application. PYNQ
is built around the Python programming language and provides constructs to abstract details of
FPGA programming, by wrapping them in special objects called "Overlays". Thus, the goal of our
project can be thought of as developing one such "Overlay" and using it in an embedded
application.

The application we chose to accelerate is based on signal processing. We wanted to choose an
open source application, since we aimed at open sourcing our final hardware implementation as
well, and contribute to the PYNQ developer community. A perfect candidate for our requirements
was GNU Radio [3], which is a set of software blocks written in C/C++. These blocks can be
connected together to implement various digital signal processing application in software. Once
such application is software defined radio, which entails doing radio related processing in software.
Recently, software defined radio has become quite popular, and thus, we chose this as our
application. To limit the scope of our project, we chose one patrticular area of software defined
radio - an FM receiver. We implemented a full FM receiver on the PYNQ board - with the
computationally intensive part (FM demodulator) as an "Overlay" (i.e. in FPGA) and the other
parts (resampling, filtering, volume control etc.) in software.

Below is a block diagram of all the modules required to implement an FM receiver (in software),
and indicates the module that we accelerated in hardware by creating an Overlay:

ATL-SOR Source
Sample Rate (sps): 1AM
Ch0: Frequancy (Mz): %4 1M
Ch0: Freq. Corr. (ppm): 0
Ch0: DC Offset Mode: OF = 4
Cho: 1Q Batance Mode: Off fot] oo i :

| Taps: ‘

CH0: Galn Mode: Manuw :

s 0
Cn0: RF Gain (dB): 12 e vy J
ChO: IF Gain (¢8}: 1
CHO: B8 Gain (dD); 1

| Rationat Resampter |
Interpolation: 185 224 |

WEBFM Recelve
Quadrature Rate: 16) 58

£V Dasmpinsis [| Multipty Const E ! ’Ei Audio Sink

» Sample Rate: 44 1k Semple Rate: 44.1KHz
Lt~ ctnaratiany

Touw: TSu

Fig 1: Block diagram for FM receiver functionality in GNU Radio. The encircled block — WBFM receiver — would be
offloaded in hardware.

For FPGA programming, we used the Xilinx Vivado suite, which is a set of High Level Synthesis
(HLS) tools that allow hardware programming using high level languages like C/C++, and design
tools to integrate hardware blocks together and generate a “bitstream” which can be used to
program the FPGA. The software portion running on the ARM processor on the PYNQ board is
in Python. Communication between the ARM processor and the FPGA is through Direct Memory
Access (DMA) via the AXI interface, which provides efficient copying of blocks of data between
the CPU memory and the FPGA. We created a custom IP block for FM demodulation (called
WBFM_accel) using Vivado HLS and connected it with DMA blocks for read and write data
transfer using Vivado Design tools. Then, we used the Python library provided in the PYNQ code
base to access the DMA and carry out data transfer between the CPU and FPGA. Finally, we
created a custom block in GNU Radio which encapsulated the DMA transfers, such that the
interface to the FPGA could be easily included as part of a GNU Radio flow graph.

Our final demonstration consisted of a comparison between a complete software implementation
(baseline implementation) of the FM receiver, and the hardware accelerated counterpart
(optimized implementation). It could be clearly seen that offloading the FM demodulation
functionality to the FPGA reduced the CPU utilization significantly.

The major contributions of this work are:

1. Creating an Overlay for FM block in GNU Radio for the Pynq board. To the best of our
knowledge, this is the first work that has ported a GNU Radio FM block to the Pyng board.

2. Creating a custom block in GNU Radio for data transfer between the CPU and FPGA
through DMA.

3. Creating an “assignment” like step-by-step detailed document to replicate our work. This
is accompanied by code that can be used as a base to recreate our project by following
the steps. These are present at: https://github.com/harveenk/PyngRadio

Note: The ‘technical details’ section of this project is covered as addendum in this report, where
we have created an assignment for students to try out more applications such as the FM receiver.

3 MILESTONES

Drawing from the high level goals mentioned in Section 1.4.1, we had initially developed the
following milestones.

Each heading is a high level milestone, followed by bullet points which describe the low level
milestones which must be achieved to complete the high level milestone.

v" RUN THE SOFTWARE FLOW FOR GNU RADIO (WITHOUT OFFLOADING) ON PYNQ BOARD
e Familiarization with the board and RTL-SDR antenna
¢ Installing required components
¢ Understanding GNU Radio flow, make sure FM receiver is working completely in
software
e Demonstrable output: FM receiver running in software on PYNQ Board

v" OFFLOAD A SIMPLE BLOCK TO THE FPGA

Familiarization with the Vivado flow

Create a simple block and testbench using HLS

Gain experience programming and testing in HLS, solve any roadblocks early on
Demonstrable output: Simulation of the block in Vivado/output on FPGA

v INTERFACING ARM PROCESSOR WITH FPGA FOR A SIMPLE BLOCK
e Understand interfacing the processor and FPGA in Python on PYNQ platform
e Solve any roadblocks early on
¢ Demonstrable output: Simple application demonstrating interaction between
processor and FPGA, e.g. playing audio

v" PROGRAMMING THE BLOCKS TO BE OFFLOADED TO FPGA
e Finish programming all required blocks (Volk, atan, FIR, lIR)
e Simulate blocks and verify correctness using Testbenches

https://github.com/harveenk/PynqRadio

e This would be our major milestone
e Demonstrable output: Simulation of the blocks in Vivado

v INTERFACING GNU RADIO SOFTWARE COMPONENTS WITH BLOCKS IN FPGA
e Ensuring seamless connectivity between the software blocks (Rational Resampler,
FM De-emphais) and hardware components (WBFM receiver, Audio)
e Demonstrable output: Complete FM receiver functionality and documentation

v" DOCUMENTATION
¢ Compile a step by step manual with instructions for replicating our work
e Create the video and update website

The major change that we made to these milestones was to directly start programming the blocks
to be offloaded to the FPGA (Milestone 4) instead of first trying to offload a simple block and
interface it. This was done due to the realization that a major component of this project was
interfacing the WBFM block with the ARM CPU and we anticipated early on that it would take a
significant chunk of the time to get right. Thus, in order to be able to devote sufficient time to the
Interfacing part (Milestone 5), the slightly redundant milestones (2 and 3) were removed. Instead,
we focused on Programming the blocks, Testing them and Interfacing.

4 CONCLUSION

In this project, we built an FM receiver using GNU Radio software running on the PYNQ board.
The PYNQ board consists of an ARM processor and a Xilinx FPGA, which can communicate with
each other. We were successful in completing 2 implementations: A baseline implementation--
where the entire processing involved in FM reception is carried out by the CPU with the help of
existing blocks in GNURadio—and an optimized implementation, where FPGA does the compute
intensive portion of FM reception and works with the CPU to generate the desired output. To
encourage students to implement applications such as an FM receiver on the PYNQ board, we
have created an assignment, where we list down all the steps involved in the implementation of
an FM receiver and also provide partial solutions to challenging parts of the implementation. We
believe that this document along with the assignment will benefit the student community!

5 REFERENCES

[1] Xilinx Zynq: https://www.xilinx.com/products/silicon-devices/soc/zyng-7000.html
[2] Pynq : http://www.pyng.io/
[3] GNU Radio: https://www.gnuradio.org/

https://www.gnuradio.org/

ADDENDUM:
PYNQ-Z1 BOARD ASSIGNMENT

PROBLEM STATEMENT
In this assignment, we will be implementing an FM receiver in GNURadio software. GNURadio
software provides various signal processing blocks for applications such as software defined
radio. GNURadio allows users to create their own custom blocks to implement a functionality
specific to the user’s application.

For this assignment, we will be doing the FM demodulation part of FM reception on FPGA by
creating our own IP. We will then write a custom block in GNURadio that internally sends the data
to the FPGA, and receives the processed data from FPGA. The entire flow of GNURadio runs on
the CPU of Pynqg board, by default.

The first section of this assignment talks about the initial setup required for the Pynq board to get
things up and running. Section 2 is our baseline implementation. In this implementation, we
execute the entire flow for FM receiver in the CPU, with the help of existing blocks in GNURadio.
Section 3, 4 and 5 explain how FPGA can be programmed to carry out FM demodulation. These
sections cover writing high level C code in Vivado HLS software to downloading the bitstream
onto the FPGA. The last section is our optimized implementation of FM receiver. In this
implementation, FPGA does the heavy lifting in terms of computation involved and works with
CPU to perform the functionality of FM reception.

1. INITIAL SETUP

Figure 1: PYNQ Board from Xilinx

1. Set the boot jumper (labelled JP4 on the board) to the SD position by placing the jumper over
the top two pins of JP4 as shown in the image. (This sets the board to boot from the Micro-SD
card)

2. To power the PYNQ-Z1 board from the micro USB cable, set the power jumper (JP5) to the
USB position by placing the jumper over the top two pins of JP5 as shown in the image. (You can
also power the board from an external 12V power regulator by setting the jumper to REG.)

3. Insert the Micro SD card loaded with the PYNQ-Z1 image into the board. (The Micro SD slot is
underneath the board)

4. Connect the USB cable to your PC/Laptop, and to the PROG/UART (J14) on the board

5. Power on the board. Make sure that all LEDs (LDO0-3) are lit up. This means the board has
completed booting up.

6. Connect the Ethernet cable into your board and see the steps below for connecting to a
computer or network.

1.1 ETHERNET CONNECTION TO THE BOARD

Ethernet port of the PYNQ-Z1 Ethernet can be connected in the following ways:
e To arouter or switch on the same network as your computer
e Directly to an Ethernet port on your computer

1.1.1 CONNECT TO A NETWORK
If you connect to a network with a DHCP server, your board will automatically get an IP address.

1. Connect the board to an Ethernet port on the router/switch (Also, connect your laptop to
the same router).

2. You can determine the IP address that is assigned to the board by accessing your router’s
configuration page (usually found at 192.168.1.1). It would have a table of IP addresses
assigned to each of the devices connected to the router.

3. Use a terminal (Linux) to ssh to this IP address. You can also use a software such as
PuTTy (if using Windows).

4. Alternatively, browsing to http://pyng:9090 will open the Jupyter environment. You can
access a terminal from here.

The default hostname is pyng. If you think that there are other boards on the network, you can
check if the pyng hostname is already in use before connecting a new board. One way to check
this is by pinging pynq from a command prompt (as shown below):

> ping pyng

1.1.2 CONNECT DIRECTLY TO YOUR COMPUTER

You will need to have an Ethernet port available on your computer, and you will need to have
permissions to configure your network interface. With a direct connection, you will be able to work
on the PYNQ board, but unless you can bridge the Ethernet connection to the board to an Internet
connection on your computer, your board will not have Internet access. You will be unable to
update or load new packages without Internet access. Listed below are the steps to establish a
direct connection with the board to your laptop. For Windows:

1. Configure your computer with a Static IP.
a. Goto Control Panel — Network and Sharing Center — View Network Connections.
b. Right click on Ethernet — Internet Protocol Version 4. Your final screen should like
this:

http://pynq:9090/

w

Internet Protocol Version 4 (TCP/IPv4) Properties X
General

You can get IP settings assigned automatically if your network supports
this capability. Otherwise, you need to ask your network administrator
for the appropriate IP settings.

(O) Obtain an IP address automatically

(®) Use the following IP address:
IP address: | 192.168., 2 . 1
Subnet mask: | 255.255.255. 0
Default gateway:

Obtain DNS server address automatically

(®) Use the following DNS server addresses:

Preferred DNS server:

Alternate DNS server:

[[Jvalidate settings upon exit Advanced...

==

Figure 2: Ethernet properties
c. Click OK to exit from the window.

Connect directly to your computer’s Ethernet port.
Browse to http://192.168.2.99:9090.

Alternatively, you can ssh to 192.168.2.99 (Linux) or use a software such as PuTTy to
open a terminal.

http://192.168.2.99:9090/

1.2 CONNECT TO JUPYTER

1. Open aweb browser and go to http://pynq:9090 (network) http://192.168.2.99:9090 (direct

connection)
2. The Jupyter username is ‘xilinx’ and the password is also ‘xilinx’
<« C AN pyng

— Jupyter Logo

Files Running _lusters

Select items to perform actions on them.

Upload New~ T

~

Figure 3: Jupyter environment
3. The default hostname is pynq and the default static IP address is 192.168.2.99. If you
changed the hostname or static IP of the board, you will need to change the address you browse
to. The first time you connect, it may take a few seconds for your computer to resolve the
hostname/IP address.

1.3 CHANGE YOUR HOSTNAME

If you are on a network where other pyng boards may be connected, you should change your
hostname immediately.

In the Jupyter portal home area, select New >> terminal. This will open a terminal inside the
browser as root. Next enter and execute the following command. (Note that you should replace
NEW_HOST_NAME with the hosthame you want for your board.)

root@pyng:/home/xilinx# 1s
pyng REVISION
root@pynq:/home/xilinx# cd scripts
root@pynq: /home/xilinx/scripts# ls
boot.py hostname.sh start pl server.py stop pl server.py update pynqg.sh

rootipynq: /home/xilinx/scripts# ./hostname.sh pynq cmc

The board needs a restart to update hostname
Please manually reboot board:
sudo shutdown -r now

root@pynq:/home/xilinx/scripts# shutdown -r now

Follow the instructions to reboot the board, Note that as you are logged in as root, sudo is not required, but if you are
logged in as Xilinx, sudo must be added to these commands

Figure 4: Change Hostname

2. RUN THE SOFTWARE FLOW FOR GNU RADIO (WITHOUT OFFLOADING) ON
PYNQ BOARD

The board is assigned an IP address 192.168.2.99 by default. Use PUTTY to login to the on-board
Linux using SSH.

Ig PuTTY Configuration
Catogory
Sesson Basic optons for your PuTTY session
Logong o
- i Specify the destination you want 10 connect 10
I emMming
Keyboard Host Name (or P address) Bon
Bel 1921682 9% s
Featwres a
Connachon typs
Window - e .
Hay [elnet Riocgn @ SSH Seqnal
Appegrance - - -
Beh
TIASOR Load save of Selele 3 stored session
Transiahon
X Saved Sessions
Selecton WPV ST
Colours
Connechon - =
- Default Setings -
Daks gy Y Losd
07 server
Proxy
Save
Telnet -
Riogin Yalets
S
Sensl
Close window on extt
Always Neaver ®) Only on clean ant
Aboul Help Qpen Lancel

Figure 5: PuTTy Login
The default username and password is xilinx.

10

&P 192.168.2.99 - PuTTY — O X

Figure 6: PuTTy Login - 2

2.1 INSTALLING REQUIRED COMPONENTS

1. To install GNURadio, use the following command:
sudo apt-get install gnuradio

2. To install rtl-sdr (antenna), use the following command:
sudo apt-get install gr-osmosdr

You can check this link for more details: http://osmocom.ora/projects/sdr/wiki/rtl-sdr

3. To test if the drivers for RTL SDR have been installed correctly, connect the antenna to the
USB port of the board and run :
sudo rtl test

If rtl_test gives an error saying:
Kernel driver 1is active, or device 1is claimed by second instance of
librtlsdr.

Then this means another program is using the device so we are not able to use it. We need to
blacklist the kernel from accessing the device.

11

http://osmocom.org/projects/sdr/wiki/rtl-sdr

> Go to /etc/modprobe.d
> Create a file "blacklist-rtl.conf" with sudo permissions
> Add the following lines in the file:

blacklist dvb_usb_rtl28xxu

blacklist rtI2832

blacklist rtI2830

> Save file and exit. Restart your laptop once so that if the kernel is still using the device, it will
stop doing so.

4. After restarting, run
sudo rtl test -t

5. To test the FM functionality, run:
rtl fm -f 96.3e6 -M wbfm -s 200000 -r 48000 - | aplay -r 48k -f S16 LE

You should be able to hear the radio playing now!

To be able to view the GNU Radio GUI, we would require a VNC server. For this, we will install a
VNC server software on the Pyng board and a client software on our laptop.

6. To install VNC server on the board, run:
sudo apt-get install tightvncserver

7. Install a VNC client such as “UltaVNC Viewer” (for Windows) on your laptop.

8. Start VNC server on the PYNQ board in order to be able to view the GUI as follows:

12

{ host:daplay or hostiiport)

Quack Opbory

) AUTO (Auto select best setiings) Comnect
LTRA {>Mit)s) - Expermental J
LAN (> IMbit/s) - Max Colors Cancsl

MEDIUM (128 - 256KInt/s) - 256 Colors
MODEM (19 - 125hit/s) - 54 Colors
< 19%xit)s) - 8 Colors

MANUAL { Use options button)

Opbons.,
View Ondy | Auto Scaling || Confym Exat
| Use DSMPIUDr No Plugen detected
| Praxy Repeater
19X Q0 32t - 60 Hz
Save connection settings as default Delete saved settings

Figure 7 & 8: Starting VNC server on the board and VNC client on laptop

9. Once connected, start the GNURadio Companion from the VNC client’'s command line using
the command gnuradio-companion.

Figure 9: VNC session

You can check this link to implement FM radio on GNU radio.

13

https://bitbucket.org/akhodamoradiUCSD/237¢c data_files/downloads/Setting%20up%20WBFM%20radio
%20blocks.pdf

10. Replace the Audio Sink block with Wav File Sink block, since we do not have audio driver
in the CPU of Pynq. Due to this, we will not be able to play Audio directly. We will store the output
in a .wav file and then listen to the audio after transferring the file to our laptop using scp.

The final flow graph should look like this. Notice the Wav File Sink block at the end :

TR T LEL L I | ez W

P bl = aBO8 % "‘Q,D’.f“,’[d!(-
e T b | Auds | =t
[teed 1
Vrwhle Vernbie ¥ | Byte Opwraters |
ot e
[Chanrel Medes |
b [Codng)
¥ [ContrePort |
PR ¥ | Debugosh |
Sarrpie fink e Lapah | AN b | Dwpracated |
x::;:::::." P [Dighal tabeivion |
Chis DE OFinet Made OH ¥ | Souaksery |
:&H:;:‘ # [Ermer Codeg]
Chis BF Gein 180 32 3% [eco)
Chion IP Geln 1l E
Chin B Gals (dab § P | Fie Opmraters |
IERET
P | Fouer Andbyan |
b1 Ul Wdgets |
P [rrgarmment Models |
¥ | ieatrumertation |
110 Badanca]
----- ¥ [Lavel Controbers |
B | Math Operstors |
P Masnrenent ok |
I b [Message Tosks |
b | Misc] =l
{2l 2

-

Figure 10: Flow Graph for FM receiver application

14

https://bitbucket.org/akhodamoradiUCSD/237c_data_files/downloads/Setting%20up%20WBFM%20radio%20blocks.pdf
https://bitbucket.org/akhodamoradiUCSD/237c_data_files/downloads/Setting%20up%20WBFM%20radio%20blocks.pdf

3. CODE THE BLOCK TO BE OFFLOADED (WBFM) ON VIVADO HLS

WBFM block - functions to synthesize

A4 ! v

From GNU Rado Vois fast_atanZs Lol nes To GNU Ragwo

) f] I

Figure 11: Sub-blocks of WBFM block

We will offload the “WBFM receive” block to the FPGA. For this, we need to achieve the FM
demodulation functionality in FPGA. FM demodulation in GNU Radio is done using 4 blocks,
namely, conjugate-multiply (here, called “Volk”), fast_atan2f (tan inverse), FIR (low pass filtering)
and IR filter (de-emphasis). We will need to code these blocks and join them together to create
a WBFM IP block in Vivado HLS.

You can start with the skeleton code provided here: https://github.com/harveenk/PyngRadio

1. Create a new project called “WBFM_project” and code the four blocks of WBFM in Vivado
HLS. Skeleton is provided in the folder “HLS”. Four blocks are: Volk, atan, FIR and IIR.

2. These blocks should pass their individual test-benches.

3. Integrate the four blocks together by entering code in the file wbfm.cpp in folder “Demo”.
The final top level function should be tested against the input and output obtained
separately from the WBFM Receive block in GNU Radio. The corresponding input and
output are recorded using the file sink option in GNU Radio.

15

4. CREATING WBFM IP

Now we will synthesize the code and package it into an IP.

1. The top-level function to be synthesized is WBFM_accel, contained in file
wrapped_wbfm.cpp. Purpose of this file is to connect the Vivado HLS WBFM block to the
AXI DMA, we need to change the existing WBFM code with Vivado HLS, and add some
additional functions for synthesis. In particular, pop_stream and push_stream are
functions to extract and insert elements from/into an AXI4 interface.

2. Change the name of the top function to WBFM_accel in the project settings.

3. Run synthesis. Solution — Run C Synthesis — Active Solution.

4. Export RTL as an IP in IP-XACT. Go to Solution — Export RTL.

Synthesis Report for '"WBFM _accel’

General information

Dete Sun Jun 04 18:49:80 2017

Versiom 2154 Budd 1412921 on Wed Nov 18 09:58:55 AM 201 5)
Project: my_whfm_new_tan

Solutiors swition]

Product family: tyng
Target davice x¢7:020¢Ig400-1

Petformance Estionates

= Tiening ()
Summary
Clock Target Estmated Uncertainty

ap_clk 1000 863 135

Latency {dock cycles)

= Semmary
Latency Interval
min mex mm max Type

477539 45365439 4775050 &S3H100 nome
Detall
% Instance

* loop

Utlization Estimates

Sammary
Neme BRAM_13K DSP48E F LT
ose
2 Console) Erors | & Wamengs Sy Progress

"N fll'um-:-_n'v; Finished creating RTL model for "WBFM_sccel’,

&l _'r- 111] Elupsed time: 0,330 seconds; current mesocy usage: 598 M8,

Ieplesenting memcry "WEBFM_accel _fast_avandf_fast_astan_table_rom’ using auto ROMs

"WBFM_accel_xillybus_wrapper_shift_reg rae” using dbleck RAMs with power-on [nitialization,

Isplesenting semary ‘WBFM_accel_xiliybus_wrapper _taps_rom” using auto ROMs.

78] Isplesenting semary "WBFM_accel xillyDus_wr r_inf_rae’ using block RAMs.

Ieplesenting memory ‘WBFM_accel xillybus_wr Dppt. Lu‘.)J‘Vt tor_as ign raw' u.lng .:).LLK A

2] Implosenting eemacy 'WBFM_accel

8] Isplesenting memory ‘WBFM_accel -ra;..»cd wbfe 182 4 4 5 5 5 out put ram .4.1«3 block R»s
] 1n' hed generating all RTL models,

[WSYSC-201] Gemerating RTL Systeal for 'WBFM _ace el

MNWOL-1304] Generati ng RTL VDL for ‘WBFM_accel

.DG~]07Z Generating RTL Verilog for '»-E"’_a:v::l'

15-112] Total elapsed time: 193.249 zeconds; peok mewory usage: 598 MB

8] Teplesenting semory

Figure 12: Generated report after successful synthesis

16

5. GENERATING BITSTREAM

Now, we will integrate the WBFM IP that we have created so that the ARM CPU will be able to
communicate with our IP. We will use Xilinx Vivado software for this. We will create a block
diagram, include our IP and DMA blocks in it and finally generate a bitstream.

Note: Use Vivado 2016.1 to avoid compatibility issues!

1. Launch Vivado 2016.1. Create a new project in your working directory and select:
e RTL Project
e No Sources, IP, or constraints (for now)

2. In the Default Part, select Board — xc7z020clg400-1
3. Click next and then finish. Vivado GUI opens with an empty project.

Next we need to add our custom IP to the list of IPs in Vivado.

4. Click on “IP Catalog” under Project Manager in the Flow Navigator.
5. Right click in the IP Catalog pane and go to “Add Repository”
6. Add the “WBFM_project” folder. This should add the IP under “User Repository” in IP Catalog.

We will now generate a block diagram. Download the wbfm_base.tcl script from the Github
repository.

7. Enter following command in Vivado Tcl console:

source <path of wbfm base.tcl>

8.This will generate the following block diagram:

i
i

11

toroer
1WA

i
4
i "

} SUEN—— . - —

1
1

i

Figure 13: Block design with our custom IP

The block diagram should contain the WBFM IP and 2 AXI DMA blocks.

17

8. Next, we need to create a wrapper for the block diagram. This will be the top level block to be
synthesized. Right click on the block diagram and select Create HDL wrapper as shown:

| e e Bp L ARt UL st b b § i wi B Thy s Vhewbe JUK L . - ‘ - e
TR -
s PprYGX T
-l el e
- = e o - = ywtem
Pt T ape - e
B it ».rree
o it -
ey | e —
| » o
Wiz) =
- o -e e
1 — e Treyaew
¥ wlrpaten - :
. | AN
¥ ot e o]
o e B o
i
o . Ao, M - -
Wk o ar
e b
1L
-ae. o
e O Sbutiiaran
I - 1
- [————
@ rrom eva
e
S r—
W S— e
- S o
— A
T reeree e - =
o (PN .
. an o
ccaner {
v e —
- -
“ttes - ~
. L -4t -
et
Loveral brm

Figure 14: Create HDL Wrapper
9. Generate bitstream by going to Flow — Generate bitstream.

Note: Ensure that the name of the bitstream is the same as the tcl file. You can also generate a
new tcl file by executing: write bd tcl <tcl filename> in Vivado Tcl Console.

18

6. RUNNING GNURADIO FLOW WITH CPU-FPGA INTERFACE
Firstly, we need to program the FPGA with the bitstream generated.

1. Copy the bitstream and corresponding Tcl script (Make sure they have same name) to the
folder /nome/xilinx/pyng/bitstream on the Pynq board using scp command.
2. Create Overlay object using the bitstream and download the bitstream to the board.

Important: In order to work with float values, we need to make a small change to the DMA driver
in Pynq.

3. In the file /home/xilinx/pyng/drivers/dma.py, change Line 463 to the following:
return ffi.cast (“float *”,self.buf)

Next, we need to add a custom GNURadio block in order to interface FPGA and ARM processor
in Pyng. First, install all the dependencies:

4. Install pip for Python 2.7 -
curl -0 https://bootstrap.pypa.io/get-pip.py

python get-pip.py

5. Install cffi for Python 2.7 -
sudo python -m pip install cffi

6. Install gnuradio dev tools to be able to compile the custom block:
sudo apt-get install gnuradio-dev

7. Install dependencies required to compile the custom block (Note: it can take very long!)

> wget -0 boost 1 55 0.tar.gz
http://sourceforge.net/projects/boost/files/boost/1.55.0/boost 1 55 0.
tar.gz/download

> tar xzvf boost 1 55 0O.tar.gz

> cd boost 1 55 0/

> ./bootstrap.sh --prefix=/usr/local #bootstrap setup
> /b2 #build
> sudo ./b2 install #install

Next, we will to add a custom block from GNURadio GUI in order to interface FPGA and ARM
processor in Pyng.

19

https://bootstrap.pypa.io/get-pip.py

You can check the steps given the Wiki page below to generate a custom block in GNURadio for
interfacing FPGA and ARM processor (using DMA transfer).

https://wiki.gnuradio.org/index.php/Guided Tutorial GNU Radio in Python#3.2.1. Using gr m
odtool

The Python code for this block is provided in our Github repository (gr-fpga-interface folder).
Execute the following commands to make your own custom block:

8. First, we will create a new module with:
gr modtool newmod fpga-interface

9. Next, we add our block to the existing set of blocks in GNURadio with the following command:
gr modtool add -t decimator -1 python

10. Copy grc and Python subfolders from our Github repository.

11. Create a build directory in the block’s main folder and cd to this directory. Now, build your
block with following commands:

Cmake ../

make

sudo make install

sudo ldconfig

12. Start VNC server on the board and open a new session with VNC client. Open GNURadio
GUL. You should see a new category called fpga-interface in the block list. Check that the block
is correctly generated.

20

https://wiki.gnuradio.org/index.php/Guided_Tutorial_GNU_Radio_in_Python#3.2.1._Using_gr_modtool
https://wiki.gnuradio.org/index.php/Guided_Tutorial_GNU_Radio_in_Python#3.2.1._Using_gr_modtool

13. Create the following flowgraph:

8 vlinxs X ceskiop (pyna-1) - o x

BT Xcwaesl Chseasszesn (e
He Edt vwm Bun Dok How

NEEY & 5908 Y¢ 0% 0 & << -~
o ;i
. | L
b | Byte Opernt
P | Channeiaw
¥ [Chaoned Mo
b | Codegl
b | complan_tey
P | CorerslPort
b | Owing ook
b | Dapwrmcatad
b | Digtal et
boldmasryt]
bl dmatny 2l
b | Equiaws]
b | Errer Codey
b Lecnl
b | e Opersts
b | FRws)
P | Fourer Anal

— ve . e lr_ree
o b1 GUI Wisgets
P | imparmere

»» Done P | irstruments

“hametslrwgns adeifm_tppe o 1P 110 Salerce ||
1K) B N

Figure 15: Flow graph with custom wbfm_interface block
14. Set the parameters of the wbfm_interface as follows:

DMA read address: 1077936128
DMA write address: 1078001664
Transfer size: 1024

WBFM base address: 1136721920

Note that the input file to this flow graph is a binary file names WBFM_in.dat. Download this file
from the Github repository.

15. Finally, you can execute this flow graph from the terminal with the command below and listen

to the audio generated!
sudo python fm fpga.py

21

