Man v/s Bot : Software Final Report

Team Members:
Dhanesh Pradhan - A53097299
Yashank Sakhardande - A53090928

Abstract:

Boardgames form part of a multi million industry. Player to player interaction is the essence of
increasing demand for board games. However, in the recent years, this industry has lacked
innovation and novelty. In this digitally emerging world, technology has led to wide expanse of
innovations. However, research[1] shows that it has also led to an alarming increase in the
loneliness which in turn has led to increasing introverts and unmotivated human beings. We
introduce a novel low-cost, portable system called 'man vs bot’' to improve user interaction that
can be used between a human and a robotic arm to play a 2 player board game. The assembly
involves a convolution of hardware and software where a smart Artificial Intelligence algorithm
will have the ability to predict its moves based on the situation on-board and make a move with
the help of the robotic arm.

Introduction:

The current age although considered as an age of increasing innovation and technological
advancements, it also has a flip side to it; the side that we generally turn a blind eye towards.
This age is also known as the “age of loneliness”. Researchers have done a number of
experiments that portray that the land of opportunities often turns out to be leading to a land of
loneliness. As a result, cities like San Francisco, Dublin, London, Sydney feature in the top 10
cities in WHO’s world loneliness index[2]. With problem comes solutions as we humans strive to
fight against our problems. Also, it can be noted that this problem can occur to a small child
engrossed most of the times in mobile phones and can range to elders who crave for
companionship but no one's around to meet their needs. There have been a number of ways[3]
to curb this problem which range from practising physical activities to helping self and others.
Many success stories have been written by following such golden steps worldwide. Here, in our
project, we propose Man v/s Bot - a multipurpose solution to this global problem that can act as
a friend, a companion as well as an entertainer.

System Architecture:

Base +
Feedback

. Hardware Components . Software Components

Shoulder +
Feedback

Elbow +
Feedback

Gripper +
Feedback

Fig 1. System Block Diagram
Software tasks

Tic-Tac-Toe:

For implementing TicTacToe, we wrote minmax algorithm. The Algorithm looks for all the
possible moves that the computer can play and choses the best possible move to go forward.
To demonstrate this to user, we have two successful implementation, one displaying the
position with letters and other using a GUI. The first implementation analyses the pieces on
board and makes a predictive move using the algorithm mentioned above. It is represented as:
‘B’ for Blank, ‘O’ for zero and ‘X’ for Cross. Since, we used Python to implement it, we place the
grid positions into a List and display it. For eg. assuming a blank grid, it represents
[B,'B,B,B,B, B, B, B, B,]. Based on the user's move it will update the grid and play its

move. Let’'s say after the user’s move itis ['X','B’,'’X’,'B’,'O’,'B’,'B’,'B’,'B’,], this means there is an
‘X’ in position 1 and 3, it will play its move in position 2.

For better realisation, we also implemented a GUI. The GUI mirrors the image of the state of the
board. In the GUI, we have provided the user an interface to play the move by clicking on the
empty box. After user plays its turn, the GUI has a “Next move” button which should be pushed
to proceed with the game. Once the button is pressed, the algorithm runs in the background and
the next move is played by the computer. We have also provided the restart button in which
case the computer takes a snapshot of the initial stage of the game and proceeds with the next
move.

Screenshot of the Tictactoe GUI

= : GU! 5 cture T board imag
e — = N .. M, tictac3.png - Photos
= FEer Moveto .
= MR (&) View all photos
Copy te
SE237D elli5- 237d
>< png
Start Game
X
(<] Restart
O
D: \Yashank\UCSD b
& Pict .
P board image
3 ReACHIt Drive
" B Videos obtained fro
- i | . Windows (C) -
192 y v My Y flle
Pyth 12items, | THesaleciad 210 K8 _ “=1h:178 Col:45 Sel:0]0 Dos\Window UTF-8 INS
- = g £ . ENG 1134
= s heven . O | F & (@ = N 09-06-2016

Fig 2. TicTacToe software implementation and visual GUI

Scrabble:

The initial phases of this implementation consisted of searching for efficient image to text
algorithms. To start with, we implemented image processing algorithm like template matching to
convert an image to text. But this involved lots of interference from the texture of the board. As a
result, we implemented this algorithm using Pytesseract. Pytesseract is an efficient image
processing algorithm that involves some background computations to convert the text on an
image to a string. We tested this algorithm on some sample images to extract the text from a car
number plate.

Finally we integrated this feature on existing scrabble images and it could successfully extract
the text out of it. Besides, image to text conversion, the next step involved developing an Al for

the scrabble game. We implemented this using python where a set of letters are specified and
based on the given letters, we were able to develop meaningful dictionary based words.

After extracting all the possible combinations we check for available slots that needs to be filled
and can be filled. Based on that, we can predict the next word that can be attempted. The
scrabble Al involves implementing a heuristic approach to predict the best possible word
(longest in case of scrabble generally leads to more points). It has been programmed in a
heuristic approach where it tries to find a meaningful longest word and drop a letter if it doesn't
make sense at all. The same is repeated to achieve better accuracy.

Again to make things interesting, we implemented a smart GUI that can extract the precompiled
image and find words out of it. The algorithm traverses from all rows and moves in each column
and processes the image to text and presents it to the user in the form of GUI. We did not
integrate this software with the hardware as we did not have the robotic arm with proper
granularity.

Support for hardware or communication between Raspberry Pi and Arduino wasn’t developed in
this case as we realised that the arm cannot have that level of granularity.

Screenshot of the Scrabble GUI

Picture Tools

File Home Share View Manage (]
& cut 1 - T Ne)
. — 4 X =F B (o) View all photos
Copy Move Copy Delete Rename New
to¥ e " folder
« ¥ P > This PC > LENOVO (D:) » Yashank > UCSD > Courses > CSE23 P
" S H Scrabble_demo.mp4 &
s Quick access Ede
s ength: 00:01:40
m Desktop -
& Downloads o = scrabble1.jpg
Documents

g samnietaken from file

image

intelli5-cse-237d "oz .
L vz scrabble3.jpg

negative

&8 Command Prompt — o X

@& OneDrive

hank\UCSD\Co \CSE237D\intelli5-cse-237 I8
W This PC on TicTacToe

RGRE = VS SR UC ST COUFSEs {CSEZ570Nifre11i5-cse-237

b Music id>python SCRBBL_plate.py scrabblell jpg

'SCRABBLE
& Pictures

B Videos

£ Windows (C]

~- LENOVO (D3)

O |\

IN 09-06-2016

aRilic Bsre Pii Open Butter Mz fashankc [l
ed ¥ Picture Tools

fos: = =
“ c GWU)L” /N vome srre view Manage) Qv O O =

ol i =) = em ay: a
1 X% cut o e ¥ open B selectall tory () Akshaya Patra » [_] Other bookmarks

Copy path
Wl Copy p: - i B Command Prompt - python SCRBBL _board.py
opyto~ | =T Rel -

Courses > CSE237D » intelli5-cse-237 »)
= I Scrabble_demo.mp SENEEIRNTETT \ >1s
Length: 00:01:40 Demo_TicTacToe_Tkint _board. abble. Tic-Tac-Toe.wmv ©.png
led.jpg template.py i.p!
— q(mhhlo”pg ImageText.mpd % TicTacToe.py pytesseract.py
ticTacToe.ino
S T A C K SCRBBL_plate.py Scrabble demo.mpd image pytesseract.pyc s
A e Scrabble? jpg te.mpd tic.py tictactoe.png
8 ulBIB k E D:\Yashank\UCSD\Cour- X \intelli5-cse-237d>python SCRBBL_board.py scrabble3.jpg
e Traceback (most rece
SIHU[T|T[IE) eid scrabble3 jpg File "SCRBBL_board
E = app = TTT(root)
- File "SCRBBL_board i i init__
5 C %blﬁ]H s i i s ig="')
Samﬁl i € ! is d\| /", line 161, in image_fto_str|
f||e scrabble5.jpg ile " ¢ .‘ \C! \i i5-cs /", line 95, in run_tesseract]
Start Game e P d0))
i line 1€07, in wait
_subproc
Restart A SCRBBL_board.py (eyboardIntarrupt
Nt Wowe Type: Python File
SCRBBL b i :\Yashank\UCSD\Courses\CSE237D\intelli5-c
oard.py~ [ES . v i B
[REACHit Drive DL Py BUBBLE®, 'SHUTTIE
Screenshot of the T.. Type: PY~ File
& Videos
4 Windows (C) a SCRBBL_plate.py OUtpUt trati f Tic-tac-t
Scrabble: EnAA Type: Python File Size: 459 KB o HC::S ration ot Tic-tac-toe
% vthon
28 items 1 item selected 10.8 KB =

ENG 11:52
IN 09-06-2016

Search the web and Windows

Fig 3. Scrabble implementation using Pytesseract

Hardware Integration:

For the final integration with the hardware team, we had a choice to implement TictacToe with
either Python Pytesseract or Template Matching algorithm. Although Python Pytesseract has an
exceptional ability to convert image to text on selected high quality images, it failed on real-time
implementation when the lighting conditions weren’t pretty good and image quality wasn’t not
high enough. Thus, we had to resort to template matching where the first frame of a blank board
will be considered as a reference and then the blocks will be detected. We even had a
predefined template of ‘X’ and ‘O’ saved that gets checked every time before implementation as
shown below.

We also had a calibration mechanism that determines the position of first block and based on
that all the grid are located. This helps in locating the position of blocks in the grid and based on
their template, the Al will determine the next move.

S

Fig 4. Sample templates of X and O used for template matching

Implementation Flow/ Project Milestones:

Serial Number Description Deliverables

1 Tic-Tac-Toe Game Video demonstration of Tic-tac-toe
Development game in python

2 Scrabble Game Development Video demonstration of Scrabble
game in python

3 Image to text Conversion Video demonstration of python
code which has input as image and
outputs string of text in it

4 Test on Rpi Video demonstration of camera
attached to Rpi implementing
Image to text module

5 Integrate software with Video demonstration of Robotic arm

hardware playing the game of Tic-Tac-Toe

For the deliverables, please check out our Bitbucket Repository .

Technical Challenges:

Template matching has its own limitations. The template needs to have the same lighting
conditions, orientation, camera alignment and the aspect ratio as that of the original
image against which it is matched. Also, template matching when implemented on board
games like scrabble would slow down the algorithm significantly due to a large number
of templates to be matched.
The Pytesseract library works best when the image contains text in black color with a
white background. This is not the case in scrabble and thus the image to text conversion
may lead to few errors. This can be possibly removed using template matching similar to
that of Tic Tac Toe implementation. However, here the number of templates to be used
is 26 (one for each letter) which makes the algorithm slow.

Conclusion & Future Scope:

Period Highlight: 1 5 Zietan Bacwa [complere 7 actual (beyond plam % Complete (beyond plan)

Man v/s Bot (5/W)

Project Specification and
necessary Component
|details

Tictactoe sample game -
Python standalone

| ar7/2016

4/21/2016

4/10/2016

4/20/2016

Scrabble game
implementation in Python

4/28/2016

4/28/2016

Real-time Image taken with

camera connected to RPI for

both the games

5/5/2016

5/3/2016

Integration of Software code |

|with Robotic Arm
|Optimization of Scrabble
algorithm

| s/12/2016

5/19/2016

5/14/2016

Porting Scrabble onto

|hardware

| s/24/2016

5/25/2016

0%

https://bitbucket.org/dhaneshp/intelli5-cse-237d/wiki/Software%20Description

We were able to achieve the game development algorithm for both TicTacToe and Scrabble. It
involved developing one step at a time and improving on the base Al. We could achieve the
required results and also portray the same using GUI for better visual effects. Some scope for
future work would involve communication with the arduino to coordinate the pick and place
algorithm. This would require high amount of precision to enable movement of robotic arm
efficiently to pick a small tile and again place it back. Also our current template matching
algorithm implies that blocks are placed in a horizontal position. However, our arm didn’t have
the support to provide a rotatory motion to place in exactly that fashion. Better robotic arms with
higher degrees of freedom can help tackle this issue.

References:
[1]http://www.independent.co.uk/life-style/health-and-families/features/the-loneliness-epidemic-
more-connected-than-ever-but-feeling-more-alone-10143206.html
[2]http://www.thereqister.co.uk/2006/05/15/loneliness_index/
[3]http://www.huffingtonpost.com/margaret-paul-phd/7-ways-to-avoid-lonelines_b_4999225.html
[4]http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_template
matching/py_template matching.html

[5]https://pypi.python.org/pypi/pytesseract/0.1

http://www.independent.co.uk/life-style/health-and-families/features/the-loneliness-epidemic-more-connected-than-ever-but-feeling-more-alone-10143206.html
http://www.independent.co.uk/life-style/health-and-families/features/the-loneliness-epidemic-more-connected-than-ever-but-feeling-more-alone-10143206.html
http://www.theregister.co.uk/2006/05/15/loneliness_index/
http://www.huffingtonpost.com/margaret-paul-phd/7-ways-to-avoid-lonelines_b_4999225.html
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_template_matching/py_template_matching.html
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_template_matching/py_template_matching.html
https://pypi.python.org/pypi/pytesseract/0.1

