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Abstract 
The reliance on computer systems increases every year.  As the amount of information 
collected, stored, and controlled by computer systems increases, the demand to secure these 
systems and the critical data they carry increases as well.  New vulnerabilities are emerging 
through malicious modifications to the design or production of circuits.  These modifications, 
classified as “hardware trojans,” can be very difficult to detect.  By applying Gate-Level 
Information Flow Tracking (GLIFT) techniques to hardware design files, our aim is to understand
the flow of sensitive data through a system and make arguments about the presence of 
potential hardware trojans within a system.  We achieve a finer granularity and greater accuracy
in detecting flows of information than is possible with traditional information flow tracking, while 
still utilizing traditional information flow tracking to reduce processing time where information 
flow is not possible.  We apply the solution and show the possible trojans with combinational 
logic designs.

Introduction 
The hardware trojan is a relatively new vector in which attacks may be launched to 

compromise the security or proper function of a computer or electronic system.  These trojans 
are changes to an integrated circuit or system that can have potentially catastrophic 
consequences.  A trojan can provide an opening from which a third party can gather secure 
data, allow unauthorized control or code execution, send false output signals, or simply disrupt 
or destroy the operation of the chip at critical moments.  The trusted operation of these chips is 
becoming more critical as systems, such as in military and security equipment, incorporates 
more and more circuits, often produced overseas.  For example, in 2007, an Israeli airstrike 
went undetected in Syria.  The failing of the Syrian air security systems is rumored to have been
caused by a hardware trojan in the foreign bought equipment [4].  

As the number of transistors increases on a single chip, it also becomes increasingly 
easier to hide these trojans within the mass of circuitry.  A small modification becomes incredibly
subtle.  One group designed and implemented a processor that supported general security 
attacks through a backdoor, while only adding a measly 1,300 gates to a processor already 
containing hundreds of thousand of gates and nearly 2 million transistors [3].  

The production and distribution of these IC chips goes through a number of steps and 
facilities before completion.  Much of the process ends up in various facilities around the world, 
as the demand surpasses what can be manufactured locally.  Counterfeit or malicious chips 
have been found and seen before from various countries.  Currently, the main method to ensure



the integrity of chips in secure systems is by using a network of trusted foundries and suppliers 
[4].

Hardware trojans may also be injected into the design phase of a circuit.  This can occur 
through the use of intellectual property (IP) cores in a design.  An IP core is a reusable unit of 
logic or part of a circuit that can be added and incorporated into other systems.  Companies will 
produce IP cores to be distributed to others and incorporated into designs in order to save them 
time and money.  However, these IP cores can contain hardware trojans that go undetected and
are distributed on a potentially global scale.

Our aim is to employ the techniques of gate-level information flow tracking (GLIFT) to 
help detect harmful flows of information through a secure system in order to detect potential 
trojans within a system.  GLIFT is a method of augmenting a design with additional tracking, or 
shadow, logic that is responsible for tracking the trust of individual bits throughout a system.

Many modern systems rely on strict information flow policies to manage the security and 
determine where throughout a system critical information can leak.  Often times, these solutions
are implemented in software, such as in the programming languages or even at the OS level.  
IFT is often employed because of its efficiency when used to prevent harmful flows of 
information in software based attacks [1].  IFT has also been implemented at the instruction set 
level, and more recently, at the gate-level [1].  By going to the gate-level for IFT, we can achieve
a finer precision of accurate information tracking to reduce false positives of potential security 
vulnerabilities.  We use GLIFT to detect trojans at the RTL level.

We implemented and simulate both a conservative IFT model, as well as a precise 
model that can only be achieved at the gate level.  By first using the conservative model, we can
gain an understanding of where vulnerabilities and potential trojans may exist with an RTL 
design.  We use the results of the conservative simulation to select certain paths within the 
system to replace with a precise model.  This allows much less additional logic and processing 
time than an entire design augmented with precise gate-level tracking, while avoiding false 
negatives on harmful flow detection.  Then, we simulate the precise model with random inputs 
to gain an idea of the general flow of information.  We can then use that information to make 
arguments about security or the presence of hardware trojans.
Technical Material 

● IFT and shadow logic

Figure 1 : information flow. 
Given a netlist with i inputs and j outputs, one of which is a secret key ‘k’ we say that 

information flows from the key ‘k’ to the output if a change in the secret key input ‘k’ results in a 
change in the output whilst keeping the other inputs exactly the same  In figure 1, a change in 
input D from 0 to 1 results in a change in the output O so we say that information from D leaks 



to the output O.Traditionally the solution to this problem is obtained by solving the boolean 
satisfiability problem (also called SAT problem) which tries to determine possible input 
conditions that result in a given output. This problem is  NP complete meaning that it doesn’t 
scale well there is no standard way to solve this problem accurately for large designs. 

We , however use this concept and take it to the gate level. For example in figure 1, If, 
by some modelling, we can show that information flows from D to OP1 and from OP1 to O, then 
we can conclude that information flows from D to O. Solving this problem now takes much less 
time. The complexity of this algorithm is equal to any graph traversing algorithm.

The granularity in the algorithm is achieved by modelling each gate in the netlist to show 
information flow at the gate level. This modelling is called shadow logic modelling. For our 
analysis, we used two types of modelling for our shadow logic. They are the conservative model
and the precise model.

● Conservative and the precise model

Figure 2: And gate with Input A being tracked

Figure 2 represents the basic concept of the conservative model of the shadow logic.The
and gate has two inputs A and B and a output O. We want to see whether information from input
A alone flows to the output. We indicate this fact by making A_t = 1 and B_t = 0 and say that 
input A is being tracked. If we want to see whether information from either  input A or input B 
flows to the output we make A_t = 1 and B_t = 1 and say that inputs A and B are both tracked. 
The conservative model states that if an input is being tracked, information flows from the input 
being tracked to the output irrespective of the actual inputs. Therefore, as shown in  figure 2, 
according to the conservative model, information flows from input A to O.

The precise model, however states that information flows from an input to the output if a 
change in that input results in a change in that output. So , in figure 2, since input A is being 
tracked, a change in input A from 0 to 1 does not change the output. So we say that according 
to the precise model, Information does not flow to the output.



a b

Figure 3 a. logical representation of the conservative and precise model b. truth table for the
conservative and precise model.

Figure 3a gives the logical representation of the conservative and precise model and 
figure 3b gives the truth table for the conservative and precise model. On comparing the two 
truth tables we see that there are some cases which show that information flow happens 
according to the conservative model and not so according to the precise model ( when A=0, 
B=1,A_t= 0, B_t=1) but never vice versa. This is true for all basic gates. Thus we can say that in
a netlist,if according to the precise model, there exist a path through which information flows 
from an input to the output, then the conservative model will also show information flow through 
that path. But the same isn’t true vice-versa.      

Gate Conservative Precise

Figure 4: Conservative and precise model for some simple gates.



● Our algorithm
Before we dive into the algorithm, We need to understand what are the inputs to the 

algorithm. We have two inputs: an input file which has the values of all the inputs to the netlist 
and the input that we want to track i.e. the input that we want to observe whether it leaks out its 
secret information to the output and the other is a simplified version of the netlist file called 
intermediate netlist format. 

Figure 5: the conversion from the netlist to the intermediate netlist format.
We wrote a tcl script to achieve this conversion to the intermediate netlist format. From 

figure 5, we see that we handled arrays-single bits and input-output pairs separately. We also 
removed all extra information in the netlist description to simplify processing.

Our algorithm begins by taking to two inputs files mentioned above and building our 
graph. Next we set the model to be conservative and then populate our graph and our shadow 
logic. Notice that we use the conservative model for our shadow logic.

 
Figure 6: Part 1 of our algorithm.    



The population process happens as follows. 
● We first get all the instances that are connected to the inputs. These instances are 

pushed onto a queue called live instances. We also mark all the inputs as available. 
● We then pop the first element in the queue. That instance is our current instance.
● If all the inputs of the current instance is available, we find the outputs of the current 

instance and its value. We also set a check bit to 1. We also set the output of the current
instance as available.

● If the check bit is 1, We proceed to find the outputs of the current instance and the 
instances to which the output of the current instance go to. We push those instances into
the live instance queue 

● We repeat this process till the queue is empty.
Once we have populated the graph, we then proceed to find all the paths through which 
information from the tracked input leaks out to the output. This vector of list of signals in the path
of information flow is called vector A. To find the list of paths, we use a modified depth first 
search algorithm where the modification is that we go deeper only if the information flows from 
the inputs of that gate to the output. We also have a backtracking mechanism if we find that 
information doesn’t propagate to the output of the gate under question.

      
Figure 7: Part 2 of our algorithm:

Figure 7 represents the flowchart of the second part of our algorithm. We start by setting 
the model to be precise. As mentioned before as the output of the shadow logic using the 
precise model depends on both the actual inputs and the inputs being tracked, different values 
to the inputs of the netlist will yield different paths through which information flows from the 



tracked input to the output if there exist such paths in the first place. It therefore makes more 
sense to see how many times a path gets activated and information flows through it to the 
output. We do this by creating a map of paths that show how many times they get activated. 
This map is called the frequency map B.  Once we set the model to be precise we,  generate a 
set of random input values and use these inputs to populate our graph. We then find the paths 
through which information from the tracked input leaks out to the output and update the 
frequency map. The method to populate our graph and to find the paths through which 
information flows to the output are the same as that explained in the first part of the algorithm. 
We repeat the two steps for a sufficient number of times. The number of times those steps are 
repeated is n. 

Figure 8: Part 3 of our algorithm.
At this point we have the vector (A) of paths of information flow from the tracked input to 

the output using the conservative model and the frequency map (B) consisting of paths of 
information flow from the tracked input to the output and the number of times that path gets 

activated. We decide a threshold ‘d’ which equals.  Wherei is the number of inputs to 
our netlist.Now looking at the path in A, if the value field of that path in the map B is less than or 



equal the threshold, we say that a trojan could exist in that path. We find the instances on that 
path. One by one we set each instance on that path to be conservative and keeping shadow 
logic model for the instances in the netlist as precise, we find whether information flows through 
that path to the output. Ther moment we find that information flows to the output, we conclude 
that the instance under consideration is a trojan. This process is repeated for all paths in A.

We demonstrated this algorithm on some benchmarks given to us by Vinnie. We also 
tested our algorithm on some of our own benchmarks given below. We have also marked the 
trojans that our algorithm managed to detect.     

Figure9: some of our benchmarks with the trojans  

Milestones 
The following is a list of the milestones at the mid-quarter update.

● Parse and preprocess RTL netlist
The first step was to parse and process the RTL netlist into a format more easily processed by 
the main tool.  This simply meant stripping unnecessary information from the list and arranging it
in a way that would be able to be easily parsed by the main tool.

● Create graph
From the preprocessed netlist, we created a graph to represent and simulate the components of
the design into a graph to be processed by the computer.  The nodes of the graph represented 
the various components in the RTL netlist, and the edges represented the wires that connected 
the components.

● Propagate signals, simulate RTL logic
We modeled the RTL logic as various combinational gates connected in a graph.  We 
implemented the ability to simulate these components, updating the values on the wires (edges)
as the inputs propagated to the outputs.  This laid the foundation to build GLIFT models on top 
of the combinational elements of the design.

● Implement models for conservative and precise models in combinational logic



With the groundwork done for simulating and following values through the system, we could add
the conservative and precise models to the simulated components, thereby constructively 
building the shadow logic as part of each component in the design.

● Algorithm to print the tracked paths through a system (conservative)
We used the models to find where the information propagated through the system under the 
conservative model.  This was to find and list the potential paths through with the secure 
information could flow.

● Algorithm to print the tracked paths through a system (precise)
The next step was to change some of the dangerous paths found with the conservative model 
into the more precise model, and simulate a set of random inputs for which the propagation of 
information could be tracked.  This allows us to see exactly where the information flows, and 
with what probability.  We are able to list these paths and mark certain areas or components as 
potential trojans.

● Model sequential logic
So far, the work has been focused on modeling and tracking information through combinational 
logic.  Combinational logic is almost instantaneous, and any change to an input or component is
immediately reflected in the output.  Another category of logic circuits is sequential logic.  The 
outputs to a sequential logic circuit depend not only on the inputs, but on the past state of the 
system as well.  This is primarily done with an additional component, called a register or flip-
flop, that stores a past value and only propagates a new value when it is signalled.  We needed 
to be able to simulate the behavior of a flip flop to add sequential capability.

● Implement models for sequential logic
In addition to modeling the behavior of a sequential circuit is the accompanying shadow logic.  
The function of the shadow logic, and of the sequential elements themselves, are depended on 
the past state.  This means that the signals would have to be propagated through repeatedly, in 
time frames, greatly increasing the complexity and time necessary to simulate the behavior.

● Add CLI (command line interface) to run the tool
The final step is to add an interface for the user of the final tool to interact with the program.  
The simplest way is with a command line interface through the computer’s terminal.

Our original milestones included both the sequential and combinational portions of the 
project, grouped as a single milestone.  As the quarter progressed, The additional complexity of 
adding sequential elements became clear.  In order to complete a working part of the project 
within the timeframe of this class, we decided to implement the combinational and sequential 
portions separately, and unify them at in the final program.  However, we ultimately decided to 
only implement the combinational portion at this time. That way, we could fully implement the 
combinational portion instead of having both portions incomplete.

While the precise model for information tracking is fully implemented for combinational 
logic, the current tool will only check a small set of predefined values.  This is useful for testing, 
but will need to be changed to handle a set of randomly generated inputs repeatedly to better 
illustrate the vulnerable paths with precision.  This is a small addition.

A command line interface has been created for the tool, primarily for testing and 
demonstration.  The interface still needs to be more general and flexible.  The interface will be 
updated as the precise model for information flow is changed to reflect the amalgamation of 
multiple random inputs, as mentioned above.



Conclusion:
The area of hardware security is now getting the attention it deserves. Our efforts have so far 
tried to tackle one of the more common and easy to comprehend mux type trojan. This trojan is 
always combinational in nature. The other type of trojan the is also very common is the time 
bomb trojan which is triggered when an internal counter overflows. This type of trojan is always 
sequential in nature and is far more complicated to detect. For this project we focused of the 
mux type trojan. Our algorithm currently doesn’t scale up very well. It gives good results quickly 
for small implementations but for large netlists with around 1000 or more gates, it doesn’t scale 
up that well. The speed of our algorithm also depends on the number of inputs. As our main 
bottleneck is the updating of the frequency map, the number of iterations that we need to run 
increases exponentially if we are to get meaningful more accurate results with lesser false 
positives. Another problem that we encountered was that the trojans that we got were 
dependent on the input values that we feed to our algorithm. We also encountered a lot of false 
positives. We can solve this problem by running part 3 of our algorithm for multiple iterations 
each using random input values.  We can then define a threshold (similar  to d in part 3 of our 
algorithm) to select the appropriate trojan.       
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