
CSE 145 – Spring 2016 – UCSD CSE Department – Project HARDIS

FINAL REPORT

 HARDIS

06/06/2016 Report for CSE 145 – Spring 2016

This report will present our solution to use the Leap Motion

Module as a controller for any robotic device, in particular the

OpenROV submarine drone.

The three students working on this project are: Antonino

Fugazzotto, Guillaume Hauss, and Yuming Qiao, with the help of

Jim Trezzo and Professor Ryan Kastner.

with

Final Report

CSE 145 – Spring 2016 – UCSD CSE Department – Project HARDIS

Page 1

Table of Contents

THE IDEA ... 2

FIRST THOUGHTS .. 3

About the device ... 3

About the tracking .. 3

HARDWARE... 4

Leap Motion .. 4

OpenROV ... 5

SOFTWARE .. 5

Leap Motion tracking program .. 6

OpenROV plugin .. 6

PROJECT MANAGEMENT .. 7

Schedule ... 7

Team work .. 8

APPENDIX ... 8

BIBLIOGRAPHY ... 8

Final Report

CSE 145 – Spring 2016 – UCSD CSE Department – Project HARDIS

Page 2

Final Report

R E P O R T F O R C S E 1 4 5 – S P R I N G 2 0 1 6

THE IDEA

 What separates mankind from the animal reign is the ability to make complex tools. Those tools

enhanced our way of life: first it was simple torch, then walls, then farming tools to have sustainable

food, and we kept developing new tools until someone invented the computer. The device you have in

front of you enables you to read this paper wherever you are, whenever you want. It does amazing

things.

But so does a piano, or a flying drone, or a robotic assistant. With each of these devices you can

interact with your environment: create music, discover the sky, help someone… The only requisite is to

have the capacity to control these devices. How to play the piano without any piano? How to make the

drone fly if you don’t have or see the remote? How to call for help if you can only move 3 fingers, in

case of disabled people?

This is where our project finds its purpose. Hardis® is a way to enable your fingers to do more. It

is a way to allow you to interact with things that you can’t normally interact with, in specific contexts. Try

to play the piano in a plane! You’ll tell me how this went! With Hardis® and a headphone, you can

practice every instrument you want, while seating in a plane. Try typing on a keyboard when wearing

an Oculus Rift®, I bet you won’t be able to write your name correctly.

Hardis® tracks both of your hands, meaning your two palms and your ten fingers, with an extreme

precision. Our software will analyze YOUR moves and, according to a database YOU would have

created, it will generate the command YOU need to perform. The next step is to connect to the device

you want to control: a piano, a drone, a robot. The final step is to educate the device, in order to make

it do the right move when receiving the command you generated. And that’s it! Three steps, and you

have a piano in your pocket. Amazing, huh?

Final Report

CSE 145 – Spring 2016 – UCSD CSE Department – Project HARDIS

Page 3

FIRST THOUGHTS

About the device

 As mentioned before, our system needs a device to play with. Hardis® is simply a universal remote,

fitting in your pocket. Our first idea was to build a very simple ground robot. Three wheels, a platform to

receive the hardware (communication, control, actuators) and we’re good to go. It clearly appeared that

thinking of this ground robot was not the same challenge than creating it. Ten weeks is not a long time, and

we needed to focus on the tracking system. So we moved on another solution.

 There were many iRobots at our disposal, so we started thinking about using one. The ground

platform was already functioning. We just needed to build the control and communication systems. Again,

on the paper, that seemed really easy. A Bluetooth module to make the remote talk to the iRobot, an Arduino

to translate the commands received into real movements, the concept was easy. However, that implied that

we had to look at the iRobot’s API, which really lacked of precision and updates. Time was our enemy, and

we couldn’t afford to lose weeks trying to figure out how to move the robot forward. iRobot was no longer

an option.

 Fate then came into play in the person of Jim TREZZO. He is working on an OpenROV (a submarine

drone, which will be detailed later in this report), and presented us this open-source worldwide-community

project. This drone met all the qualifications we were looking for. The communication system was already in

place, using a socket.io channel (also detailed later on); the command system has been fully developed and

tested by thousands of people, meaning the API was precise and easy to use. We found our device to play

with.

About the tracking

 Tracking the hands is the core technique of our system. We needed something precise, fast, small,

and easily compatible with any hardware platform. Therefore, we immediately rejected systems such as

Matlab, FPGAs, and Arduino to perform the tracking.

Lucky for us, Leap Motion exists. Again, this device fit perfectly our needs: an image sensor the

size of a lighter, pluggable to any computer via USB, with an API in more languages than we can even

imagine. The choice was made and we purchased it in the second week, in order to start working on it

the soonest possible. After a quick hands-on session, we became aware that a lot of data was available

while tracking the hand: fingertips position, palm’s Euler angle, palm’s normal and direction vectors,

grasping strength, arm orientation, etc.

We first thought about tracking the fingertips positions: huge possibilities therefore a lot of

available commands. However, the data was not stable enough to perform a fast matching with the

recorded gestures. That is easily explainable by the fact that you’ll never place your fingers at the exact

same locations twice in a row, even though you want to. Thus, we forget about absolute data, such as

location, and focused on relative data, such as angles and orientation. These parameters were less

sensitive to hand’s instability and implied a more natural movement of the hand: tilting according three

axes is basically the purpose of a hand. We agreed on that idea and focused on three values: pitch

angle, yaw angle and grasping strength. These values are bounded and easy to fetch from the Leap

Motion SDK.

Final Report

CSE 145 – Spring 2016 – UCSD CSE Department – Project HARDIS

Page 4

HARDWARE

Leap Motion

 Leap Motion moto is to remove barriers between people and technology. They believe in a

simple, natural input as a key to unlock any technology. Your hands are such a simple input.

Here is the image sensor. It’s the size of a lighter, with

a single USB cable plugged on one side. The green led is on

the side facing the person. Following the rule of the direct

frame, the x and y axis are defined as shown in the picture

 Three infrared LEDs are projecting a point grid,

and an infrared camera is capturing images of objects and

the grid. Some complex image processing algorithms are

then run to fetch the position of any object inside the viewing

space.

The hand is then rendered if needed. Here are

shown two important vector:

- The normal vector of the hand’s palm

- The direction vector of the hand’s palm

These two vectors define a plan that is used to calculate

Euler angles of the hand.

As mentioned before, we are using pitch

and yaw angles to control the OpenROV. If you

are not familiar with such parameters, this graph

will explain what these angles are.

Figure 1 : Leap Motion axis

Figure 2 : Leap Motion Image

Figure 3 : hand vectors

Figure 4: Euler angles

Final Report

CSE 145 – Spring 2016 – UCSD CSE Department – Project HARDIS

Page 5

OpenROV

 OpenROV is a worldwide-community open-source project focused on designing the most modular,

easy-to-build and cheapest submarine exploration drone. Hardware and software are constantly

upgrading, allowing each and every one of us who wants to work on that project, to develop new

abilities or functionalities. The core idea is that you can build this drone with on-the-shelf materials and

a little bit of brain.

The drone is tethered to a computer (wireless

communication underwater is not that easy to use) with a

100 meter Ethernet cable, allowing real-time

communication and feedback. The power is supplied by

6 batteries on the OpenROV, used by flash lights, camera

and propellers. As to now, the drone is purely exploration

focused. No robot arm has been developed to interact

with its environment. We can imagine that Hardis® could

be used in such context, where the robot arm will repeat

the gesture of the man’s hand. That’s the beauty of our

system: its adaptability is nearly infinite.

Deepen the understanding of the

propulsion system of the OpenROV does matter

because it is our target. Three propellers allow

the drone to fly undersea. One top propeller is

used to lift or sink the drone, two back propellers

are responsible for thrust and yawing. The power

of these propellers are stepped onto 5 levels,

and they are binary activated once they need to.

To put this in other words, the robot can speed up

and turn right in the same time, for example.

Direction is decoupled from speed.

As mentioned before, the OpenROV is equipped

by a camera and two flash lights. In further developments

of our system, it would be easy to add new gestures

recognition matching new commands, such as taking a

picture or switching on the lights.

Figure 5 : OpenROV in the field

Figure 6 : Propellers

Figure 7 : Flash lights and camera

Final Report

CSE 145 – Spring 2016 – UCSD CSE Department – Project HARDIS

Page 6

SOFTWARE

 Leap Motion tracking program

 As mentioned before our initial input is your hands’ gestures. The Leap Motion module is there to

capture these gestures, and extract the physical variables used to generate the OpenROV commands.

We focused on the pitch angle, the yaw angle and the grasping strength to determine the movement we

want the OpenROV to perform. Basically, this drone can move forwards, backwards, turn right, turn left,

go up and go down: six moves matching six possible binary combinations of these parameters.

 The first step is to continuously get the frames from the Leap Motion sensor. This loop does that

for us:

Leap.loop(controllerOptions, function (frame) {…});

This variable counts the number of hands perceived by the Leap Motion. Different functions will

be called depending on its value.

var handsCount = frame.hands.length;

Then we focus on the right hand to begin with, using this variable:

var hand = frame.hands[0];

To assure a proper interaction, the hand needs to be face down. We check that using this

code.

var normal = hand.palmNormal;
var normX = normal[0];
var normZ = normal[2];

if ((normX < -10 || normX > 10) && (normZ < -10 || normZ > 10)) {...}

Finally, we capture the interesting parameters using:

var pitchInput = hand.pitch();
var yawInput = hand.yaw();
var thrust = hand.grabStrength();

 The Leap Motion API is really helpful here. The pitch and yaw values are bounded by -1 and 1,

the grab strength by 0 and 1. Matching parameters values with binary commands is then really easy.

 OpenROV plugin

 The software architecture of the OpenROV cockpit allows a very easy plugin addition. Therefore,

we decided to go on this path, instead of designing a whole new software, that would have been

interacting with the OpenROV.

 First, we will explain how the OpenROV is controlled, and then our plugin will be detailed.

 At any time, the state of the OpenROV, in movement or at rest, is defined by this JSON object:

self.positions = {
 throttle: VALUE_1, yaw: VALUE_2, lift: VALUE_3,

pitch: VALUE_4, roll: VALUE_5, strafe: VALUE_6
};

Final Report

CSE 145 – Spring 2016 – UCSD CSE Department – Project HARDIS

Page 7

 The throttle value is responsible for the speed of the OpenROV, the yaw, pitch and roll values

defined the orientation of the drone and the strafe value is the camera control command. To set these

values, we call these functions:

Move forward:

rov.setThrottle(1);

Move backward:

rov.setThrottle(-1);

Turn right:

rov.setYaw(1);

Turn left:

rov.setYaw(-1);

Move up:

rov.setLift(-1);

Move down:

rov.setLift(1);

Our task is then to call these functions at the right time, given the Leap Motion gesture input. We

use simple if-loops to perform this setting step. Every new frame provided by the Leap Motion gives a

new set of data, meaning that we can set commands values with a high rate and accuracy.

PROJECT MANAGEMENT

 Schedule

 We had to come up with a schedule and a list of provable milestones, to make sure that we were on

the right tracks. Professor Kastner advised us to specify one milestone per person per week. This precision

guarantees that everyone is involved in the project at any time, and that each aspect of our system is equally

developed. Here is our schedule.

Member Week 1 Week 2 Week 3 Week 4 Week 5

Guillaume
Set the
project
scope

Define the final
goal

Pitch the
project

CRUD program to
manage motions

used

Find the
commands to
send to the
OpenROV

Yuming
Join the
team!

Find the
tracking
system

Get data from
LeapMotion

Find the right data
to use from the

LeapMotion

Architecture of
the OpenROV

plugin

Tony
Join the
team!

Design the
system

architecture

Simple
LeapMotion
Application

Demo of
OpenROV plugin

(50%)

Demo of
OpenROV plugin

(100%)

Final Report

CSE 145 – Spring 2016 – UCSD CSE Department – Project HARDIS

Page 8

Member Week 6 Week 7 Week 8 Week 9 Week 10

Guillaume Final report (50%)

50% Video
script and

icons for the
Oculus Rift

100%
Video
Script

Final report
(100%)

Video making

Yuming
JS program to get

these data
25% plugin

code

50% Get
the stream
live video

100% Get
the stream
live video

JS program
documentation

Tony
Architecture of
new OpenROV

plugin

25% plugin
code

75% plugin
code

100% plugin
code

JS program
documentation

 Team work

 We decided not to have a team lead, because there was no need for one. Being only three

students working on that project, making decisions were not that difficult and tasks division was naturally

done based on one’s preferences. Indeed, we were lucky to have complementary competences, therefore

each one of us focused on the aspect he was more comfortable with. We had weekly meetings to report

the progress on our assigned task. We also used this time to change our core idea (Database/no

database, external software/internal plugin, Java/JavaScript…) Therefore, our project is perfectly

adaptable to the OpenROV exploration context.

APPENDIX

 Leap Motion: www.leapmotion.com

 OpenROV: www.openrov.com

 Plugin LeapMotion: https://bitbucket.org/afugcse/hardis_cse145_sp16.git

BIBLIOGRAPHY

 Figures 1, 2, 3:

https://developer.leapmotion.com/documentation/javascript/devguide/Leap_Overview.html

Figure 4 : http://www.chrobotics.com/library/understanding-euler-angles

 Figure 5: http://www.openrov.com/products/2-7.html

 Figure 6: http://www.thehulltruth.com/marine-electronics-forum/651823-openrov-remote-

controlled-underwater-drone-1-000-a.html

Figure 7: http://www.3drc.es/sherlock-mi-openrov/

http://www.leapmotion.com/
http://www.openrov.com/
https://bitbucket.org/afugcse/hardis_cse145_sp16.git
https://developer.leapmotion.com/documentation/javascript/devguide/Leap_Overview.html
http://www.chrobotics.com/library/understanding-euler-angles
http://www.openrov.com/products/2-7.html
http://www.thehulltruth.com/marine-electronics-forum/651823-openrov-remote-controlled-underwater-drone-1-000-a.html
http://www.thehulltruth.com/marine-electronics-forum/651823-openrov-remote-controlled-underwater-drone-1-000-a.html
http://www.3drc.es/sherlock-mi-openrov/

