
CAVECamX - Developing an Improved CAVECam

Jorge Pacheco, Nathan Hui

June 11, 2015

1 Abstract

The CAVECamX project aims to develop a device for generating immersive 3D spherical images that is
a significant improvement over the previous generation CAVECam by providing more flexible algorithms
and more intuitive interfaces. This will give scientists and researchers an accurate and immersive way to
document environments. The CAVECamX uses two Sony QX-1 cameras mounted on top of a precision gimbal
to gather a series of images that, when stitched together, produce a high resolution 3D spherical image. The
sensors used in this device will improve the quality of the 3D content over that generated by the previous
generation CAVECam by improving the resolution and depth perception, as well as including additional
position data. Currently, we have produced an algorithm that dynamically generates orientations for any
given set of camera parameters, a web interface for remote connection and control of one Sony QX-1 camera,
and software modules to gather the data coming from the CAVECamX. The overall goal for the CAVECamX
is to increase access to 3D visualization technology by providing a simple and easy-to-understand interface
for generating immersive 3D content.

2 Introduction

Imagine the possibility of experiencing any place in the world by seeing what another person has seen and
being where he or she has been. Not long ago, this idea was preposterous, but Dr. Tom DeFanti (UCSD
Calit2) envisioned a solution where a set of images, stitched together in a spherical stereographic image,
could generate a realistic 3D environment. This was the birth of a system known as the CAVECam, which is
a system that generates 3D immersive spherical views that allow users to experience immersive 3D content.

The original CAVECam enabled the generation of immersive virtual reality media by providing stereo
images in a spherical pattern. Dr. Tom DeFanti envisioned this system as a way to capture a 3D represen-
tation of the temples located at Luxor, Egypt. Today, this system has evolved and is used in many different
locations where capturing accurate representations of spaces or the environment is desired. The CAVECam
has enabled the documentation of beautiful interior scenes in Florence, Italy, Egyptian temples at Luxor,
and caves in El Salvador, among others. However, as revolutionary as this technology is, it does not provide
the level of flexibility and usability necessary for a layperson. Configuring the CAVECam consists of setting
individual camera parameters and using a dated orientation generator that limits the functionality and po-
tential of this technology. We propose creating a new iteration of the system named the CAVECamX that
will allow for total control of the setup while providing an easy-to-use interface.

The CAVECam is a system that, at the time, provided the best resolution (12 MP), and provided a
usable LCD interface for controlling the movement of the camera rig, but did not provide simultaneous
control over stereo camera configuration. In particular, camera setup required the user to manually adjust
exposure, resolution, and focus for each set of pictures, making the process slow and cumbersome. In contrast,
the CAVECamX is a low-cost high-resolution 3-D visualization tool that will enable researchers to easily
generate immersive 3-D content using high resolution stereo cameras. This system will, from the ground
up, be designed to replicate and improve on each of the CAVECam components. First, we will replace the
Lumix GF1 cameras with Sony QX-1, which is capable of providing better resolution and real-time feedback.
Second, we will develop a precision gimbal that will provide total coverage along both pan and tilt axes.
Third, we will provide a better software that will generate camera orientations based on camera parameters.

1

Fourth, we will incorporate an IMU (Inertial Measurement Unit) and an LRF (Laser RangeFinder) to enable
georeferencing of objects within the scan. Finally, we will incorporate programmable interfaces to enable
users of the CAVECamX to quickly and effectively configure the device with custom camera and orientation
configurations.

3 Technical Material

3.1 System Overview

The CAVECamX, at a high level, is composed of seven key components. The include the precision gimbal,
Telemetry Management System. Panorama Orientation Generator, Real-Time Control Code, Camera Con-
trol Code, and dual camera network configuration. The first six components were split between the two CSE
145 groups, and the last component was handed off to a Calit2 staff engineer (Chris McFarland).

Figure 1: CAVECamX System Diagram

Figure 1 shows the full system diagram of the CAVECamX. The CAVECamX is physically separated
into two components - the onboard computer, and the gimbal. The gimbal serves as the main structural
platform for all the sensors, while the onboard computer serves as the high-level controller and interface for
the entire system.

3.2 Panorama Orientation Generator

The panorama generator is the heart and soul of the CAVECamX project. It is an algorithm that provides
full control over the creation of images that generate the immersive 3D environment. The code starts by
asking the user some information about the cameras being used. By inputting the sensor sizes along with
the focal length of a camera and its lens, it is possible to mathematically predict the field of view that such
a camera provides. In mathematical terms, field of view is often expressed as angular size of the view cone,
or angle of view. The formal definition of field of view is given in Equation 1 where FOV stands for field of
view, being a function of the sensor size and focal length.

2

FOV (s, f) = 2 × arctan

(
s

2f

)
(1)

After the field of view of each picture is calculated, the algorithm will attempt to create a data structure
that will hold the points in space corresponding to locations where a picture will be taken. To do this, the
user must specify the overlap desired between adjacent pictures. In addition, the user must be aware of the
stitching algorithms used to create the panoramas, as well as the saliency of the environment being imaged.
Some stitching software recommends a particular amount of overlap needed in order to ensure enough
common features amongst images. If there are not enough features, pictures will not match correctly. We
have establish overlap amounts of 30% on vertical, and 30% horizontal relative to each picture edge.

3.3 Real Time Control Code

The Real Time Control (RTC) module functions as the communications module between all the software
and hardware components. Its main function is to provide a smooth transition from picture to picture by
managing the timing of the individual components.

One component that the RTC communicates to is the Camera Control code. The RTC receives notifica-
tions from the Camera Control code that the cameras have taken a picture. This allows the RTC to ensure
that it does not progress to the next picture before the current picture is complete.

The second component that the RTC manages is the Telemetry Management System TMS). The com-
munication between these modules provides a feedback system that measures the motion on the gimbal
by means of an Inertial Measurement Unit (IMU). By relying on hardware to measure settling times, the
CAVECamX is able to minimize the amount of time between picture transitions.

The RTC will maximize the efficiency of the system by minimizing the time needed for the CAVECamX
to settle while providing just enough time for the cameras to take the picture. This allows the CAVECamX
to optimize the time it takes to complete any scan.

3.4 Telemetry Management System

The Telemetry Management System (TMS) functions as a data czar for all of the sensors on board the
CAVECamX. The previous CAVECam did not include any measurement devices on board, and as a result,
users had a difficult time matching objects in the scans from the CAVECam to physical locations in the
world. By using an IMU and an LRF, the CAVECamX will be able to georeference objects in it’s view by
performing specific translations and rotations of its known scan locations, and from that information, be
able to concretely identify a particular object in view as being at a specific location on the globe.

Figure 2: Telemetry Management System Topology

The TMS consists of a software daemon for each sensor, a data queue, and a I/O thread, as shown in
Figure 2. Each sensor is managed by a daemon, so that updated values are constantly available for polling.

3

The RTC module has a software handle which enqueues a snapshot of sensor data, a timestamp, and the
current image filename for writing. The I/O thread then asynchronously writes data frames from the queue
onto the disk. This software topology ensures that the disk I/O speed never directly impacts the ability of
the CAVECamX to gather data.

4 Milestones

4.1 Milestone 1

4.1.1 Panorama Orientation Generator

For Phase 1, Jorge Pacheco concentrated on developing an algorithm that tested the functionality of the
gimbal. During this stage, the gimbal was still in development. We implemented a relatively naive algorithm
that generated a large number of orientations, which we then used to test the gimbal’s movement and
response.

We used the locations in space to measure the settling times needed in order to provide for smooth
transitions from picture to picture. The limiting factor at this stage were the focus and exposure times for
individual images, since settling times for the gimbal were negligible.

Figure 3: Phase 1 Stitch Result

To test the code, we began to take a 2D scan of the lab. The resulting stitch of the first 200 pictures is
shown in Figure 3. The full scan would have required approximately 800 pictures in total.

4.1.2 Real Time Control Code

For first milestone, Jorge Pacheco focused on the hardware and software components as well as reimplement-
ing previous CAVECam code in Python. We decided to use Python because is one of the easiest programming
languages that provided a simple serial communications interface. When first communication with gimbal
was successful, some settling time values were hard coded in the code as to provide smooth transitions from
different gimbal configurations.

4

4.1.3 Telemetry Management System

The goal for the TMS at this stage was providing a basic pipeline that captured data from the appropriate
sensors and wrote them to a file. Nathan Hui was able to to achieve this using a Python thread with a
thread-safe deque. The data from the queue was asynchronously written into a hard-coded file on disk. We
did a basic functionality test, demonstrated at https://youtu.be/E2BtxC87Fm8. This shows Hui running
the telemetry manager using iPython and displaying the last few lines of the output file each second.

4.2 Milestone 2

4.2.1 Panorama Orientation Generator

For Phase 2, Jorge Pacheco refined the implementation of the algorithm in order to optimize the number of
pictures needed to create nice panoramas. Originally, the Panorama Generator code was written by Sergei I.
Radutnuy on a previous iteration of CAVECam, but code had some bugs1. As a result, some of the panoramas
generated using this algorithm were not successful. In these cases, the code did not provide enough overlap.
This undesired functionality arose from the fact that the old algorithm focused on generating different yaw
increments depending on pitch angles. Even though the implementation seemed correct, the code did not
generate enough features between pictures and some panoramas failed to stitch properly. We revised the
algorithm, and then decided to create a new algorithm from scratch that concentrated on generating the
correct overlap for each camera.

We tested this code again, scanning the entire lab. The resulting stitch is shown in Figure 4.

Figure 4: Phase 2 Stitch Result

Figure 5 shows an example of the incorrect overlap. Here, the camera positions were generated with a
targeted vertical overlap of 30%.

1https://github.com/UCSD-E4E/sacp/tree/master/panorama

5

Figure 5: Overlap Error due to Incorrect Field of View

4.2.2 Real Time Control Code

For this phase, Pacheco was able to specify fixed bounds of movement for the system. The gimbal by design
allows 360◦movement on pan axis, and 180◦on tilt axis. For convenience, we decided to define the vertical
range to be 0◦to 180 ◦, with 0◦pointed up. We also decided to define the horizontal range to be 0◦to 360◦.
The initial position of the gimbal was set to 0◦pan, 90◦tilt (pointed forward). This convention was taken
in order to avoid working with negative degree values and making the Panorama Generator Code easier to
work with.

4.2.3 Telemetry Management System

The goal for the TMS during Phase 2 was to provide an interface for near real-time processing of sensor
data to provide feedback for the RTC module. This was implemented by creating the concept of sensor
daemons for each sensor, and allowing each sensor daemon to update sensor data independently of the main
thread execution. This allowed the main thread to asynchronously check sensors for a particular state.
Unfortunately, no demonstration video was made of this capability due to uncertainties in sensor selection.

4.3 Milestone 3

4.3.1 Panorama Orientation Generator

During Phase 3, we improved the panorama orientation generator to fix issues relating to the improper
calculation of the camera’s field of view. Slight errors in calculating the camera’s field of view rippled down
into the orientation generation code, which affected the actual amount of overlap between to images. After
manually measuring the cameras field of view, we determined that original values used for sensor sizes and
focal length were incorrect. We updated these values into the code resulting in correct panoramas and correct
points in space. This problems can be minimized if field of view of camera is tested before being used.

After fixing the overlap issue, we tested the code in the CSE courtyard. The resulting stitch is shown in
Figure 6.

6

Figure 6: Final CSE Courtyard Stitch

4.3.2 Real Time Control Code

For phase 3 of the Real Time Control code, Pacheco specified the communications protocol on the data link
layer between the RTC and the gimbal controller. The program will open a serial port using python. It will
then pass a string in the format “$Pxxxxx,yyyyy”, with P as a 0 or 1 indicating whether or not to take a
picture, and xxxxx and yyyyy as 5 digit numbers corresponding to gimbal steps.

Step(θ) =
θ × 1600

360
(2)

Equation 2 gives the conversion of degrees to microsteps.
This string is sent at time intervals determined by hardcoded values in the Panorama Orientation Gen-

erator. For each image, two strings are sent with the same orientation parameters. The first is used as
an indicator for the gimbal to move. The following string uses the flag 1 to specify that no movement is
necessary but that the gimbal controller should command the camera to take a picture.

For example, system will send the string“$000691,00094” which tells the gimbal to move to location
155.5◦from forward, and 21.3◦from vertical. It will then send another sting “$100691,00094” with the first
character set to 1 instead of 0 to tell the gimbal to trigger the camera at the current location.

4.3.3 Telemetry Management System

The goal for the TMS during Phase 3 was to provide an integrated software package that could be loaded
onto the CAVECamX platform to provide data capture. This would include integration with the RTC
module and the Camera Control module. Due to unmet software development dependencies, the TMS was
not integrated with the other software modules, however, the functionality required to integrate the module
was added to the TMS. This functionality is demonstrated in https://youtu.be/j54ONzDRrYY, which shows
the TMS running in a simulation harness and the last few lines of the output file printed to the terminal.
This demonstrates that the TMS is capable of compiling and saving the data, provided that all pertinent
software handles are integrated properly.

5 Overall Deliverables

The Guatemala expedition deliverable has been eliminated due to the project being behind schedule. At
current, the hardware for the system has not been properly integrated, so the system cannot be thoroughly
tested prior to the deployment. Additionally, the user interface and multi-camera technology are not mature
enough to deploy with confidence that they will work in the field. In addition to this, we have determined
that there is not an immediate and critical use case for the CAVECamX on the Guatemala expedition,
especially in its current state.

Future deployments include trips to the Duomo in Florence, Italy, as well as cave systems in New Mexico.
These deployments are contingent upon the completion and integration of the CAVECamX.

7

6 Technical Difficulties

The gimbal is being developed by Dimitri Schreiber. He encountered some problems with the mechanical
components of the gimbal, but he is already making arrangements in order to complete it as soon as possible.
Due to this inconvenience, testing of the real time communication between the Real Time Control Code and
gimbal has not been possible. We will be postponing the real time processing of data from sensors and
gimbal firmware by a few days until gimbal implementation is finished. In the mean time, next iterations of
software components are being developed in order to minimize delays of project deliverables.

7 Conclusion

The CAVECamX project resulted in several key developments in the effort to build a new CAVECam system.
These key development include developing new gimbal hardware and control software to properly orient the
cameras, dynamic orientation generation algorithms, and minimalist data acquisition software packages.
Because of the scope of this project, the development accomplished by this team does not comprise the
entire development push needed to complete the CAVECamX. However, the developments in this project
provided the some of the key components to building the new CAVECamX.

Future development on this system will consist of polishing the existing software modules and improving
the current hardware components. From a top level perspective, certain key technologies still need to be
fully developed to enable the project to be fully integrated.

8 References

1. http://www.ccs.msstate.edu/conferences/NSFcyberbridges2014/presentations/keynotes/DeFanti-
Great%20Data%20Cyberbridges%206-1-14.pdf

2. http://ucsdnews.ucsd.edu/archive/newsrel/general/2011 06defanti luxor.asp

8

