Vision Controlled Autonomous System (ViCAS)
An investigation of inter-robotic control through vision

Frank Bogart, James Lee

Abstract - Currently, robotic systems require one human operator per robot. The operator cost can
be reduced by moving to one operator per system by enabling autonomous inter robotic control.
VICAS is an investigation of inter robotic control by using an Unmanned Ground Vehicle (UGV) to control an
Unmanned Aerial Vehicle (UAV) indoors. Existing navigation methods can be implemented by the UGV and
extended to the UAV aided by computer vision tracking techniques. This tracking is achieved by use of
custom stereo vision algorithms to estimate the 3D location of the UAV relative to the UGV. The UGV
localizes and navigates through the room by Real-Time-Appearance-Based Simultaneous Localization and
Mapping (RTAB-SLAM) and handles UAV navigation by piloting the UAV to stay within line of sight while
avoiding obstacles. This inter robotic control allows a single operator to control this two robot system.

Introduction - Two robotic systems working together as one can be of vital importance when
saving money on operator cost and allowing for extended missions where an individual robot would not
work. Such system is the example of a system with a UAV and UGV. UGV's tend to be very heavy in
comparison to UAVs. This allows them to have large payloads and impressive battery and energy
sustainability. For example, NASA’s Curiosity[1] rover has a radioisotopic generator which powers the robot
over a long life of time. These heavy and complex energy storage devices are not typical in UAVs since they
have a much smaller weight regulation. UAV flight times average around 20 minutes and UGVs can last
days to months with proper generators. This difference is emphasized since UAVs typically can not land and
takeoff, they are constantly in the air, spending energy to stay up when hovering. A UGV can sit still and be
in a low power state without its motors draining its power reserves.

This phenomena can be taken advantage of by creating a joint system of a UGV and UAV. The
UGV can provide power and recharging capabilities to the UAV if the UAV can land on the ground vehicle.
This is a very challenging task for a small UAV with limited processing power to do. Large processors
require larger batteries which would impose more weight on the UAV. If the processing can be done on the
UGV, this can save a lot of power and weight costs for the aerial vehicle. This would take advantage of the
aforementioned advantages of a ground vehicle and could be processing in a stationary state.

The trickiest part about landing on a UGV autonomously is knowing where the platform is and where
you are in relation to it. This is typically done with vision systems on the UAV, however, this would cause the
UAV to be too heavy and large requiring additional processing power and hence batteries. Keeping the
heavy vision sensors such as cameras and LIDAR systems off of the UAV and on the UGV would solve this
problem. The location of the UAV in relation to the ground vehicle could be determined by cameras on the
UGV and sent to the UAV for controls. This type of external contextual input is very important for distributed
robotic systems to work together.

In our system, instead of sending the location of the UAV in relation to the UGV to the UAV, we do
all the thinking and processing on the UGV and send actions to the aerial vehicle. Our system is designed to
be indoors and this is why we are doing it this way. If we were sending the location to the UAV, it would have
to do processing on board to determine the proper actions to move and fly and that would require more
processing, battery... and in the end, more weight. This is bad because the copter if too big, would not be
able to be flown indoors.

A lot of quadcopters and UAVs are capable of being autonomous independently since they have
processors fast enough to allow them to analyze sensor data and navigate. However, they are larger,
noisier, and blow more air around to stay up. It would be unacceptable to have a quadcopter with a 2ft

diameter flying inside being a danger and nuisance to people. The propellers alone could harm and cut
people if there was any accidents. The only foreseeable way to have an indoor, people friendly copter is to
keep it small and thus keep the processing done elsewhere.

A prime example of processing being done elsewhere is done by the GRASP Lab at the University
of Pennsylvania with multi nano quadcopter control. Each quadcopter is being tracked by offboard cameras
positioned around the room and processing and control is done on an external computer[2]. The cameras
being used are stationary, static to the room cameras using IR light reflecting off of surfaces added to the
copters. This is only useful in a professionally setup lab setting since the cameras need to be measured out
and calibrated to the room. In addition, each camera costs thousands of dollars. This is not acceptable for
ordinary indoor/office use of small quadcopters.

We propose to use a stereo camera mounted on a ground robot with a large computer onboard for
sensor and navigation processing for both UGV and UAV. A stereo camera allows the robot to see and track
the copter in 3D just like the IR motion capture cameras do. It is a much cheaper solution but requires more
processing power to create the 3D scene and has to do implement complex computer vision algorithms to
track the object since there is no marker placed in contrast to using the IR cameras. This requires some
research and effort to create the algorithms to track the specific object (UAV) and will be slower because of
the added 3D processing but can be a cheap alternative to expensive IR camera systems.

With the use of one stereo camera on the robot, multiple cameras in the room are no longer
needed. The robot can move from room to room piloting and recharging the copter as needed. The UGV can
pivot, navigate and maintain the copter in its sights to fly it throughout the environment.

Technical Material: A description of the development process of the VICAS - Before starting development
of any tracking or control algorithms, decisions needed to be made as to which robots to use. We wanted to
focus mainly on software development instead of mechanically/electrically developing the robots so we
focused on purchasing commercial off the shelf systems. We opted to use a Turtlebot from the company
Willowgarage[3]. The robot is a great choice for indoor use as it is small enough to not annoy people, yet
large enough to accommodate a laptop computer onboard for heavy processing. It's differential drive system
allows the turtlebot to rotate in place to keep the copter in sight without having to move forward or reverse.
In addition to these features, the turtlebot comes with a Kinect sensor. The kinect allows the robot to see in
3D. It projects an infrared pattern into the scene and records how it projects using an IR camera.
Considering the pattern might be too diffuse to appropriately illuminate the small copter, a stereo camera
was chosen to track the copter leaving the kinect for navigation and obstacle avoidance purposes. The robot
also interfaces with the ROS software framework which is our framework of choice which will be introduced
shortly.

For the UAV choice, we chose to purchase a Crazyflie nano quadcopter from Bitzcraze. The copter
is the size of the palm of your hand and can be flown from a computer out of the box. This allows us to
connect the usb RF transmitter to the laptop on the turtlebot. The crazyflie also comes with an
accelerometer and gyroscope which can send data back to the turtlebot computer. These are important
when knowing the orientation of the quadcopter which is very difficult to discern by computer vision methods
alone. By knowing the orientation of the copter, a command to go straight or right turn can be aligned with
the turtlebot to coincide with the correct translation or rotation. Both these sensors interface with ROS as
well as publishing driver commands such as roll, pitch, yaw, and thrust to pilot the copter. The copter also
comes with on-chip firmware for auto stabilization to control the motors appropriately. This simplifies the
control code to only rotation and translation commands instead of direct motor frequencies which could have
timing and processing issues.

As mentioned previously, both systems are ROS capable which helped with communication and
flexibility between turtlebot and crazyflie. ROS stands for Robot Operating System[4] and is a software
communications framework. It includes a publish and subscribe topic interface with custom messages.

These messages and topics allow for any system to communicate using their message format. ROS is also
comprised of nodes which sit between topics to do local processing. For example, on the turtlebot there
exists a node for computer vision tracking, navigation, copter control and many more. The node previously
developed for the crazyflie provides an interface with the Bitcraze crazyflie SDK to pull and publish data from
the onboard sensors over the usb RF transmitter/receiver. This allows the node to be ran and do all local
control processing on the turtlebot computer rather than on the crazyflie itself.

With the individual robots decided on, we were free to work on software algorithms. Up first was the
tracking algorithm. This makes logical sense because the 3D location of the crazyflie must be known before
any control systems code can be developed. As stated above, the sensor chosen to be used to track the
copter is a stereo camera. A stereo camera is made by two cameras synchronized together with a constant
known distance between them. It works very similarly to the human eye system. From each camera,
features are found in the scene and attempted to be matched in the opposite camera image. From a feature
pair, known as a correspondence, the 3D depth of the point can be calculated from knowing the translation
between each camera.

The cameras used were leopard imaging
machine vision cameras. These cameras
provided some setup issues with linux at first
since they were designed to be used with
Windows. A ROS node needed to be developed
to pull images from each camera and publish
them as ROS messages. This could be done
with existing nodes since the cameras are UVC
(universal video class) compliant, however, as
discovered by speaking with the company the
raw data is encoded in a GR bayer format but

oyl B gl Fu iy me 4 wd E=a
e it e e e A

The raw image produced by the leopard imaging cameras
. . was presented in a8 GR-bayer pattern. Needs to be decoded to
expressed as YUYV. Some image decoding RGE before computer vision algorithms can be applied.
needed to be done at the driver level first and

hence using pre-written ROS nodes to speak with the camera was out of the question. A new driver was
written using libv4I2 (video for linux) to pull the raw data from the cameras. With the raw data now at our
fingertips, it could be correctly decoded into RGB rather than a RG-bayer pattern. A GR bayer pattern works
by storing all pixel values on one layer of the image in contrast to an RGB image which has a layer for red,
blue and green respectively. Hence the GR bayer pattern has a resolution much larger than the standard
RGB image.

An algorithm to decode the raw Gr-bayer pattern was present in a sample program used to view the
cameras in linux presented to me by the company. After using their decoding method, the image was
properly decoded, however, strangely in grayscale and not RGB. This was okay for me since | did not plan
to use color information for tracking. It should be investigated in the future how to properly decode the
pattern since the sample display program correctly showed the colors.

Next up when creating the stereo camera was to have both cameras be synchronized through ROS.
This means that each timestamped image has the same timestamp. This can be achieved either in software
via filtering or in hardware by triggering the second camera via an external strobe input. The software
approach was chosen in our custom driver, but did not work to synchronize the cameras. There was
noticeable lag between each camera when viewing them side by side. Instead, | ended up adapting the code
to decode the GR bayer pattern into one of the existing UVC ros drivers to pull and decode the data. This
was nice since the drivers in the package already had a stereo node which synchronized the cameras
properly via software filtering and timestamp matching. This resulted in two images which matched in time.

Next, the two cameras needed to be rigidly connected together into a stereo rig so the distance
could be calculated for triangulation. A mounting method needed to be decided. The distance between two

cameras in a stereo configuration is known
as a baseline. As the baseline changes,
the 3D data’s “focus” changes. For
example, if you move your finger too close
to your nose, you are unable to focus on
the finger and your depth perception of it
begins to fail. Same goes for a stereo
camera. If the baseline is too large, depth
information can be lost at close range. So
finding a good stereo baseline is important.
At first, the stereo rig was designed to have
an adjustable baseline to configure to the
user’s choice of focus. However, this
added complexity to the design and proved
difficult. It also had the chance of not
staying rigidly fixed. It is very important
when creating a stereo rig to not have the

Top images: Time offset, The finger on the fight is out of synch with the
left and arrives latar. The bollem images are praparly synched. cameras move post calibration. With a

dynamic baseline setup, there runs the risk

of the cameras moving slightly out of
alignment and having to recalibrate both cameras. Hence, a simpler stereo rig design was proposed and
implemented using a single piece of aluminum. Aluminum is strong enough to not warp or bend during

normal robot movement while soft enough to drill and mold with
power tools and was an obvious first choice.

The two cameras were given a baseline of 4 inches which
provided enough depth of focus for 3D data (any object less than 2
feet could not be detected). We assumed the copter would be further
than this distance at all times. With measurements made, holes were
drilled and standoffs in place for the cameras to be attached. A hole
behind each camera was also drilled to give access to the camera’s Stereo camera rig ﬁnisﬁcd with a
USB 3.0 port. 4inch baseline

After creating the camera rig and synchronizing the cameras,
camera calibration is required. Camera calibration finds the exact
measurements of the baseline. More explicitly, it finds the rotation and translation required to move the right
camera frame into the left camera frame. This is typically done with a checkerboard pattern held in front of
both cameras by the user. Algorithms are used to find the corners of the black and white checkers and
matched between the left and right frames. The translation in pixels can be found directly from the algorithm.
The mapping from pixel space to real world units (meters) is given when the physical width of each checker
is defined. In our case, the width of each checkerboard was .054 meters. By knowing that each checker is a
perfect square, any lens distortion can be calculated and corrected to produce a rectified image. Calibration
is also able to find the physical pixel widths to do this conversion as well as camera centers and focal
lengths.

Once camera calibration is complete the cameras are able to produce a disparity map of the scene
in front of them. This is a mapping of the distance between each pixel and the matching feature in the other
camera. Together, these matching features are called a correspondence. The amount of shift from each
correspondence is the disparity of each feature. This information can be displayed as a disparity image. At
first, the disparity image did not seem very accurate. There was a lot of perceived noise and/or not detected
objects. By modifying some parameters in the stereo matching procedure, the image could be improved.

There were a few notable parameters that really improved the disparity map. For example, the texture
threshold was set to be too low initially and noise from each image was matched to noise in the other. By
setting it to a value of 500, noise in the disparity image was decreased. This is because the texture (or
contrast) of background noise is low compared to hard objects like a lightswitch on a white wall. The
disparity of each pixel is not exactly the depth. To get the depth, each pixel goes through triangulation to be
projected into the scene. After this step, a point cloud can be produced from the disparities.

A point cloud is akin to a 2D image, but in 3D. For every pixel that has a matching correspondence,
the depth can be calculated and the x and y locations can be calculated from knowledge of the focal length
and pixel widths of the cameras. However, for scenes which lack features (ie: a white wall), 3D data can be
be inferred.

With a proper representation of the 3D scene, algorithms were written to track the copter’s location.
The library of choice for 3D processing was the Point Cloud Library (PCL) which has a lot of useful functions
for manipulating point clouds. The first thing that is done in the tracking algorithm is to threshold based on
distance to reduce the search volume for the copter. In other words, ignore any 3D points which are too
close or too far away. Our system ignores all points closer than 0.8 meters since the camera’s 4inch
baseline can not accurately represent anything below that. Also, we do not intend to fly the copter anywhere
further than 4 meters since the copter is so small and
would no longer resemble a copter but rather a small
dot in the scene.

Since the point cloud coming from the stereo
camera is pretty sparse (most of the 3D volume does
not include points), we opted to extract clusters of
points from the scene. This gave us another
parameter to threshold with. If a cluster had too many
or too little amount of points, then it could not be a
copter. For example, at 2 meters away person

. typically has around 500 points associated with their
The point cloud produced by the stereo camera. Red

o body while the crazyflie has around 40. This gave a
usters are too large. Yellow bad shape, and green o
are good candidates. pretty good indication of what was a good copter

candidates, but not good enough. For example, if a
person was wearing a white shirt (which lacked features), then instead of 500 points, they could contain
around 250. The same could be said for chairs and other objects. We needed another metric besides just
the number of points. We decided to make a crude calculation of perceived surface area. This is the surface
area of the object as if it were a flattened 3D object rather than a true object having grooves and warped
textures which would increase the actual surface area. This calculation allowed us to threshold out larger
clusters which passed the point requirement, but were still obviously too large like a textureless door or
empty picture frame. Our copter is roughly .015 square meters and anything above or below that amount by
a threshold was determined to be a bad candidate and was not included.

We could narrow the search space further by eliminating clusters that did not appear to be the
shape of the copter. At any given shot of the copter, the width of it was at max 4.4 times larger than its
height. In other words, it was closer to being a square than say a lamp. This allowed us to remove clusters
which were too long or skinny to be the copter.

Any candidate which met the cluster size, surface area, and shape requirements was determined to
be a good copter candidate. A final check is to make sure it “looks” like a copter. To do this, we created a
mathematical model of the copter and compared any given frame of it to the model. To do this, we first
needed images of each candidate cluster. Through ROS, the tracking algorithm subscribed to both the point
cloud and image topics of the stereo camera. With each new message, a synchronized point cloud and
camera image was given. From each good cluster candidate, a 3D bounding rectangle was computed and

projected into the 2D image. This gave us a bounding box around where candidate cluster’s 2D image
location was. The projection was done by the camera’s camera calibration matrix that was determined
during camera calibration. This is essentially the reverse of creating the 3D points. Instead of re-projecting
each pixel into the scene using the disparity/depth, the 3D points are projected into the 2D image.

From the 2D image location of each candidate a model of the copter was trained using positive
(images of the copter) and negative (images of candidates not being the copter) images of the copter. The
model creation process was leveraged by the OpenCV (open computer vision) library. The model used is
called a Classifier, or more precisely a Cascade Classifier During the training process, stages are created
modeling the features of the copter. If a candidate is compared against the model, it first is compared
against the first stage, then second, third, etc. It must pass all stages to be considered a copter, otherwise it
is rejected along the stages. Training was initially done on 1500 positive and 1500 negative images of the
copter. The training data produced a good classifier, however the images were taken at a variety of ranges
with some taken beyond the 4meter limit. This caused the classifier to be skewed too far towards being a
small copter (just a dot). This would make any small generally spherical dot in the scene be mistaken for a
copter. The classifier was retrained using images of the copter close to the camera with the home of
extracting more features from the copter images. A similar model was created to the previous classifier
without the small black dot false positive phenomena. This was done with only 600 positive and 900
negative images.

If the classifier determines that the
candidate cluster is the copter, than the algorithm
publishes the 3D center of the cluster over the
nodal network to the control code. Once the
algorithm determines that the copter has been
found, a region of interest (ROI) is placed around
the previous copter location. This ROI reduces the
search volume for the next iteration. Since the
pointcloud/image data is coming in at a fast
enough rate, it can be assumed that the copter
has not moved too much from its previous
location. Hence, the algorithm searches in the
nearby area. This allows the algorithm to process Copter found: Region of interest (ROI) placed around
less 3D data with less errors and faster time. previous copter location. When copter is not found, the
When the copter is not found (classifier rejects all ~ "®gion expands incrementally.
candidates), then the 3D ROI expands by a
constant amount along all dimensions. This accounts for any direction the copter may have moved while it
was not in sight.

Once the 3D center of the copter has been sent to the control code, a PID loop is used for control
system. A target is some 3D point in space where the quadcopter is desired to be at relative to the turtlebot.
An error is calculated between the target and the 3D center of the copter and used in the PID. There are
separate PIDs for each axis of the flight dynamics. Also extra PID loop is added for thrust. The controller can
make a judgment on how to adjust the appropriate thrust commands to perform a desired pattern. A little bit
different parameters were used in the PID loop for the yaw. Instead of the 3D points, a specific yaw value
was the target and the input was the current yaw value received from the IMU on the quadcopter.When
testing the PID codes, a problem during take-offs was noticed. During the take-off, more thrust was needed
to lift off from the ground. However with this excess amount of thrust, the quadcopter moved in the frame of
the stereocam too fast for the tracking algorithm to make any adjustments with the PID. Hence, we
investigated if a higher frequency tracking algorithm would improve the control.

The second tracking algorithm implemented makes use of the fact that when launching the copter,
the turtlebot will not be moving. When the cameras are not moving, background subtraction can be utilized
to find any movement in the scene. This functionality is only processed on a single camera’s image feed.
Over time as frames come in, a background is defined by subtracting subsequent frames from a model to
see how they have changed over time. Once a big change has occurred, ie: a person walking into the frame,
then the change is labeled as being foreground until there is minimal change and hence fades into the
background. These small changes are identified as potential copter candidates and are again compared to
the model of the copter in the cascade classifier. If the copter is found in the foreground of the image, then
its 3D center must be published over the network. Since background subtraction is typically done on a single
image stream from one camera, there is no way to get the 3D center from the data alone.

To solve this, the algorithm subscribes to both the left camera image stream and the point clouds.
Once the copter has been found, since the point cloud is organized the same way that the images are
(640x480 data blocks), it is easy for each pixel to be looked up in the point cloud. The copter cluster is
re-created this way and the copter center is published over the network. This algorithm results in an average
of 18Hz, double the speed of the clustering algorithm. In theory, once the copter is hovering within a defined
region of space, the algorithm can be switched back to the clustering algorithm since the velocity of the
copter would be stable enough for the lower frequency tracking algorithm to control it. In other words, on
copter takeoff, the turtlebot would use fast background subtraction to track the copter and once under
control switch over to clustering to allow the turtlebot to move forward throughout the room.

Control results with background subtraction definitely updated quicker. The results of the control
system was much more clear with the faster tracking algorithm. After seeing faster response of the control
system, another check was added in the PID loop for thrust. The velocity of the quadcopter was taken into
consideration in the control system. Before, only position of the quadcopter affected the PID correction.
However, a check for the velocity of the quadcopter was added to make the PID more fine tuned. The
velocity of the quadcopter was calculated using the IMU on the quadcopter. The IMU gave back data about
its vertical acceleration and the acceleration was summed over time to get the velocity. With this additional
data, checks for different cases depending on which way the quadcopter was traveling and the which way
the PID correction was trying to make the quadcopter move were added and changed the thrust accordingly.
For example, if the quadcopter was already moving and the correction was trying to make it move even
higher faster, the adjustment to the thrust would not as big as the adjustment applied to thrust if the
quadcopter was moving down. Adding this check in the control system reduced the overshooting of the PID.

Work was also done to enable to turtlebot to move within the room while tracking the copter with the
goal of waypoint navigation. Waypoint navigation would allow an operator to tell the system where to move
in the room instead of each individual robot. This implies allowing the turtlebot to localize itself within the
room as well as the crazyflie. If the turtlebot knows where it is within a map of the room and it knows where
the crazyflie is in relation to itself, then in turn it can place the crazyflie in the map as well.

To allow the turtlebot to localize itself within the room the process of SLAM (Simultaneous
Localization and Mapping) was implemented. Instead of writing this process ourselves, we chose to utilize
an existing ROS package. After some research on SLAM packages, the RTAB-MAP package[5] proved the
most promising. This stands for real time appearance based mapping. It is an RGBD-SLAM approach which
uses color camera information in addition to depth which seemed a perfect match for the turtlebot’s kinect
Sensor.

SLAM works by first understanding the robot’s motion (odometry) and relating its movement
(creating a path) by comparing it against a series of landmarks (robust features) within the room. It does this
by a process called bundle adjustment which takes in a
series of image frames, finds the features, and attempts
to match them within a given global model of the room.

Once a bundle is complete, the robot updates its

position within its generated map given that the landmarks are stationary and not moving. The robot’s
odometry can be determined by a variety of methods. In our case, we relied on the turtlebot’s wheel
encoders to give us an estimate of its odometry. Typically, for best results, the odometry is determined by a
combination of sensors: wheel encoders, gyroscope, and cameras (visual odometry matching features over
time). However, the turtlebot’s gyro was disconnected was never re-connected due to time constraints since
it would have to be soldered and integrated into the software driver system.

To test the effectiveness of RTAB-MAP, it was first tested by teleoperating the robot through the
environment to create a map. Without the use of gyroscope information for orientation, the map appeared
skewed because of wheel encoder drift. We attempted to fuse visual odometry to correct, however, our
visual odometry had inherent drift as well. The SLAM investigation was dropped to focus on improving visual
tracking and copter control.

Milestones - The project was distributed into three major milestones 1) tracking the copter, 2)
autonomously piloting the copter, and 3) following and piloting the copter. These milestones were introduced
at the beginning of the quarter. Development began in parallel with milestone 1) being done by Frank and
milestones 2) being done by James. While the stereo camera was being built and tracking algorithm
developed, the copter was being built and communication established. By week 5, a tracking algorithm was
finished well enough to track the copter with high accuracy behind a white wall. At this point, the copter was
almost ready for control code to be developed. In the mean time, the tracking algorithm was refined with a
lot of time spent training cascade classifiers. About a week was dedicated to creating the first classifier
alone. Once a proper tracking algorithm was produced, waypoint navigation and SLAM was investigated for
the turtlebot.

Roadblocks appeared during this phase. It was difficult to install RTAB-MAP since it was conflicting
with the version of PCL which | was using. After joining the forums which the algorithm was maintained on
and getting in contact with the author, | found a workaround by obtaining the binaries and forcing the library
to link with the ROS version of PCL. A second roadblock occurred when trying to get a good map from
RTAB-MAP using the turtlebot. The map was poor because | could not properly calibrate the wheel
encoders. The calibration procedure of the turtlebot depends on knowing a reference angular displacement
which is given by the gyroscope. However, the gyro was disconnected and could not reconnect it to the
turtlebot. The gyro also contributes to the odometry and would have drastically improved the map produced
by RTAB-MAP.

In addition to roadblocks introduced by SLAM and navigation, ROS threw a big monkey wrench into
the thick of things. During a normal Ubuntu update, a lot of ROS packages were updated. Before the update,
the first tracking algorithm (clustering) would publish the copter center, when locked on, at around 24Hz.
After the update, it fell to 5Hz. After adding some timing print statements throughout the code, it was
determined that the slowing was happening in a ROS to PCL conversion function for point clouds. After a
week of posting the problem on the ROS forums with no replies, | decided to open up the source code for
the conversion to understand it. | was able to tweak some numbers and force the conversion to happen a
certain way which sped up the algorithm to 15Hz, but not back to the 24Hz original speed.

Of the three milestones that we set out to accomplish, we were able to fully complete the tracking
algorithm and partially finished controlling and system navigation. The control code was incomplete due to
the unexpected and inconsistent behavior to the changes made in the thrust of the quadcopter. Same
behavior from the quadcopter was expected in the beginning given some thrust value. However throughout
the project, it was noticed that the result of a certain thrust value depended on various factors like the life of
battery and the breeze in the air. Without any consistency in the thrust which was heavily used in the control
system, a complete control code could not be finished.The navigation milestone was abandoned because it
required the control systems of the turtlebot/crazyflie to be completed. It would be impossible to move both
the turtlebot and crazyflie through the room without the turtlebot being able to keep the crazyflie in front of

itself. Efforts to navigate the room were transitioned to efforts to controlling the copter and increasing the
frequency of the tracking algorithm due to the ROS update induced problems.

Conclusion - With a system like ViCAS in place, a single operator could operate the joint ground
and aerial system. The system could be extended to multiple aerial vehicles with multiple cameras and
multiple recharge stations on the vehicle. For this to take place, the operator interacts with the base system,
in this case, the ground vehicle since it can support high computing power and telecommunication systems.

The ViCAS system contributed to this effort by developing tracking algorithms using low cost
sensors, ie: stereo cameras, compared to active infrared sensors. Stereo cameras can be mounted on a
moving robot and are not required to be stationary in fixed positions. A rudimentary method of control using
PID loops was established to keep the copter in the frame of the camera with mild success. The copter is
able to stay in the frame for a few seconds but drifts away and tracking is lost. Possible future work might
include improving the control system code using alternative control method to take into account the copter’s
velocity and flight dynamics. The gyroscope of the turtlebot could be attached and re-integrated into the
ROS software system of the turtlebot. This would allow for proper odometry calibration which could improve
the use of RTAB-MAP based SLAM. From this generated map, the copter could be placed within the map in
relation to the turtlebot. A planar laserscan approach using the map data could be implemented to
incorporate obstacle avoidance and local cost maps for the copter.

The ViCAS team was able to create a Vision Controlled Autonomous System. We were not able to
control it to the degree we originally anticipated, but with a robust tracking algorithm and a two way
communication system established between UAV and UGV, a first phase control system was setup between
the two.

References:

http://en.wikipedia.org/wiki/Curiosity %28rover%29
https://youtu.be/w2itwFJCgFQ?t=78
https://www.willowgarage.com/turtlebot
http://www.ros.org/about-ros/
http://wiki.ros.org/rtabmap_ros

okl bd -~

http://en.wikipedia.org/wiki/Curiosity_%28rover%29
https://youtu.be/w2itwFJCgFQ?t=78
https://www.willowgarage.com/turtlebot
http://www.ros.org/about-ros/
http://wiki.ros.org/rtabmap_ros

