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1. Abstract 
 

Archaeologists have been studying the buried Maya temples for many years through excavating tunnels              
around the temples. However, there are various issues with the hand-drawn documentation of the tunnels such as                 
that it is time-consuming and hard to correctly capture the complex temple structures. To tackle this problem, this                  
project works on creating a system to generate 3D models of the tunnels that can accurately document the temple                   
structures within a reasonable amount of time. Originally, the team was developing a system using single camera to                  
record the tunnel excavation. However, there are problems in accuracy of the generated 3D model due to the                  
system’s likeliness to lose track of itself while recording. We propose a dual-camera system that can solve this                  
problem by increasing the accuracy of the generated 3D model through its wider field of view. Furthermore, the two                   
cameras will reduce the problem of losing track.  

2. Introduction 
 

Remnants of Mayan civilization are being discovered by archaeologists as they dig extensive networks of               
tunnels into sites. The archaeologists document their journey and findings with hand drawn sketches and more                
recently, LiDAR. However, sketches are time consuming, prone to error, and do not truly depict the complexity of                  
the network, while LiDAR requires significant coordination and time to do just one scan. Furthermore, LiDAR does                 
not provide a real time result, which could cause a wasted trip if scans are incorrect. Therefore, it was proposed to                     
use SLAM algorithms for mapping. The benefits of SLAM algorithm are that they do provide real-time results in a                   
quick and easy manner to allow the user to know if a mistake was made and re-do a scan in the moment. However,                       
while the SLAM approach meets the necessities of archaeology excavations, there was an issue with the accuracy. 

We extend this proposal to the logical next step, multi-camera SLAM. Adding an additional camera not                
only increase accuracy but provide additional robustness for the system as a whole. We test three multi-camera                 
SLAM algorithms on two Realsense ZR300’s and two Kinect V2’s.  

As these tunnels have complex structures and tight turns, the single camera system loses track in these                 
sudden turns due to drastic scene change and limited field of view. It fails to correlate and map points between                    
different frames in these tight turns. As a result, it loses track and the system stops generating the 3D model                    
resulting in incomplete models. One more issue faced by the single camera system is that the models are generated                   
with small errors as pose estimation was done with just single camera and it may not be exactly same as the ground                      
truth. Over the time, these small errors tends to build up and in the end it becomes enormous and results in drifting                      
issue, as a result of which the models generated are not accurate. Sometimes the straight tunnel paths may appear                   
drifted along a particular direction and may not appear straight anymore. These issues could be rectified using wider                  
field of view and with multiple cameras. With multiple input feeds, the SLAM algorithm will be effectively able to                   
estimate the pose with minimum or little error, as a result will generate more accurate and better 3D models. 
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RTAB-Map or Real-Time Appearance-Based Mapping uses RGB and depth data to create a graph whose               
nodes are the pose of the camera at a point in time and edges are the constraints between each pose. This graph is                       
generated as the camera moves and is used to construct a point cloud in real time. 

MultiCol SLAM is an extension of ORB-SLAM2 algorithm supporting multiple cameras at the same time.               
It tries to estimate the camera pose and relative motion between the cameras with input frames from multiple                  
cameras. It can also work with any camera types be it fisheye , omnidirectional or perspective cameras. It introduces                   
MultiKeyframe for handling keyframes from different cameras, hyper-graph model for multi-camera SLAM,            
multi-camera loop closing method, minimal solver for pose estimation and a different initialization method map               
using the essential matrix. It uses generic camera model as in (Scaramuzza et al., 2006, Urban et al., 2015) covering                    
any type of cameras (fisheye, omni directional, perspective). 

MCPTAM or Multi-Camera Parallel Tracking and Mapping is an extension of Parallel Tracking and              
Mapping (PTAM) SLAM algorithm, which maps the real world by estimating the position of the cameras and                 
mapping the feature points in the environment. MCPTAM resolves some of the problem of PTAM with the wider                  
field of view of the multi-camera system, and improves the quality of feature point capturing and pose estimation. 
 

3. Multi-Camera SLAM Algorithms 
 

3a. MCPTAM: 
 

MCPTAM is extended from the single camera SLAM Algorithm, PTAM software. The algorithm of 
PTAM on which MCPTAM is based maps the real world by estimating the position of the cameras and mapping the 
feature points in the environment. MCPTAM is designed for multiple cameras that are rigidly connected together 
into a cluster. If connected together, MCPTAM allows any number of cameras, and any configurations of the 
cameras. Hence, this flexibility enables MCPTAM to achieve different missions in different environments. The 
algorithm is based on the ROS development environment. In our system, we use two Kinect V1 to run the 
MCPTAM algorithm. 

Traditional single camera SLAM algorithm suffers from the aperture problem, “which is the inability to 
discern different types of motion when looking at a scene through a narrow FOV.” MCPTAM eliminates this 
aperture problem with the large field of view of multiple cameras, and hence increase the robustness of tracking. 
Furthermore, multi-camera system allows MCPTAM to achieve high quality of feature point capture and pose 
estimation. Especially with overlapping field of view, feature points that don’t match among different cameras could 
be discarded. The algorithm even allows non-overlapping field of view by its original extrinsic calibration method 
which would be explained later in the Milestone section. 

Also, unlike the ordinary PTAM algorithm, MCPTAM system can utilize the overlap of the cameras’ field 
of views to correctly estimate the cameras’ motion. As a point feature is observed by the cameras in the cluster at the 
same time, the depth value of that point can be accurately triangulated based on the extrinsic calibration of the 
system. The algorithm still can function even without sufficient overlap of the cameras’ field of view. Based on the 
extrinsic calibration and the motion of the system in relative of the surrounding environment, MCPTAM still can 
estimate the cameras’ motion even without the overlap of field of view. Without the restriction to have overlaps 
between the cameras, MCPTAM allows a configuration that maximizes its collective field of view and improves the 
localization estimation. 
 

3b. MultiCol SLAM: 
 

It uses a body frame concept and calibrated cameras for pose estimation. Thus both intrinsic and extrinsic                 
calibration parameters are calculated before hand. It uses the following transformation to map a 3D scene point to                  
corresponding image point. 
 

http://www.robots.ox.ac.uk/~gk/PTAM/
http://www.robots.ox.ac.uk/~gk/PTAM/
http://www.robots.ox.ac.uk/~gk/PTAM/
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Figure 3.1: Depicting the body frame concept and Observed scene point pi and its transformations. 

 
 

 
 
where pitc is the scene point observed at camera c at time t, and the transformation is given by transformation                    
matrices, Mc for the cth camera and Mt at time t , and π is the generic camera model introduced by [Scaramouzza et                       
al 2006,Urban et al,2016]. mitc is the projected point i in camera c at time t. 
 
Algorithm Overview: 

This algorithm requires slight overlap in the FOV between different cameras. The algorithm works in the                
following way, It has:  

1. Tracking thread 
2. Mapping thread 
3. Relocalization thread 
4. Loop closing thread 

 
Tracking Thread: 

It uses similar tracking method used in ORB-SLAM2 system. It uses image feature points for tracking                
using ORB feature extractor with multiple scale levels. The feature points are represented using ORB descriptor for                 
efficient performance unlike the image patch matching method. Then it uses constant velocity model to calculate the                 
current camera pose. It uses 3 point correspondences instead of the EPnP solver, which uses n point correspondences                  
to estimate the initial camera pose. First the Essential Matrix for a single camera is calculated for different                  
multi-camera system poses and and try the project the same point into different cameras and do bundle adjustment                  
over all other observations between two multi-camera system poses, thus initializing the mapping more robustly. 
 
Relocalization Thread: 

Once the tracking fails, it kicks off the relocalization thread. This converts the frames into bag of words and                   
queries the MultiKeyframe data base for closest match, and it tries to match the mapped points with respect to that                    
particular MultiKeyframe entity. Instead of n points correspondence used in ORB-SLAM2 , this algorithm uses 3                
points correspondence to estimate the current camera pose. If more than a particular number of points are retained,                  
then relocalization is done, and tracking is started as usual.  
 
Mapping Thread: 

It runs in parallel to the tracking thread, where it tried to refine the estimated or already mapped points. It                    
also removes the redundant map points and redundant keyframes if there is no significant change in the scene. Once                   
the map points are updated , it is then fed to the tracking thread to track the refined points. It handles the                      



3 

MultiKeyframe insertion and map point deletion. It also does triangulation of the new map points over multiple                 
cameras. All the redundant and duplicate map points observed in multiple cameras are fused in this thread. Then it                   
does local bundle adjustment and optimizes over poses and map points. Similar to ORB-SLAM, it does multi                 
keyframe culling , i.e., if two multi keyframes shares more than 90% of the map points, then the key frame is                     
deleted.  
 
Loop closing thread: 

It is the extended version of the loop closing thread introduced in ORB-SLAM2 , but with the support for                   
fisheye and omni-directional cameras. It uses visual cues to identify the possible loop candidate. Possible similar                
MultiKeyFrame candidates are then queried from the database to compare with the current MultiKeyframe. Then               
similarity transformation is done to match it with the closest multikey frame match. Loop correction is done to all                   
the Keyframes connected to it and to all the map points being observed by those keyframes. This helps in                   
eliminating the error build up and also removes the drift issue which occurs due to error accumulation over the time.  
  
Advantages over single camera ORB-SLAM: 

It outperforms the ORB-SLAM2 in Keyframe accuracy, because of better estimation with multi-camera             
model and using multiple keyframes for pose estimation. It performs really well in map initialization because of it                  
robustness. It also outperforms the ORB-SLAM algorithm in rotational and translational accuracy by significant              
margin. Thus yielding a better and more accurate 3D model addressing the drift issues. It also employs several                  
performance improvements for achieving real-time results with multiple keyframes and tracking in multiple input              
feeds. It is able to achieve performance of 25fps. 
 

3c. RTAB-Map: 
 

 
 Figure 3.2: RTAB-Map Overview, from a RTAB-Map presentation [7] 

 
RTAB-Map is a RGBD-SLAM approach meaning it can utilize just RGB and depth data to map. It is also 

graph-based approach where the nodes of the graph represent the pose of the camera at a point in time and edges 
represent the constraints between each pose. The graph is generated as the camera moves around and takes more 
pictures, and it helps construct a point cloud in real time. The node (or the pose) of the camera is generated from the 
features found in an image and is stored via the bag of words approach. As the camera moves, the features are 
checked repeatedly by a loop closure detection to see if the camera has moved to a new location or an old location. 
When the loop closure hypothesis is accepted, the node is completed, and a constraint to a new node is created. So 
the edge (or the constraint) is created when the hypothesis is accepted. Furthermore, after the hypothesis acceptance, 
the graph is optimized to minimize errors. 

RTAB-Map uses visual odometry to determine the position and orientation of the cameras by repeatedly 
looking at captured frames and depth data. It first looks at 2D features found in a frame and compares it to other 
features found in recent frames. It also establishes the optical flow between consecutive frames by seeing where the 
image features match and overlap. To compare 2D features, the algorithm uses both 3D correspondences and 
reprojection to estimate the transformation between frames. 
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Loop closure detection is used to determine if a new image is of a new location or an old location. The 
algorithm uses the stored bag of word vectors of 2D features to quickly compare to see if there is a loop closure. If 
the algorithm has a strong confidence and accepts the hypothesis, then the location is set and the map is adjusted. 
Loop closure helps increase the precision of pose estimation because recognizing previous locations adds a level of 
robustness to a previous mapping and gives certainty when moving from an old location to a new one. 

RTAB-Map uses Vertigo, a graph optimization, to reduce the amount of errors in the graph. Without a 
robust graph optimization in play, the occurrence of similar objects in different locations can lead to incorrect loop 
closure detections.  
 

4. Milestones 
 

We defined carefully identified the potential tasks required to bring up the systems and finally came with                 
the following milestones to help us track and progress with the project. Initially we started with comparing the                  
different cameras used in SLAM algorithm, but as we progressed through, the milestone got changed to comparing                 
different SLAM algorithms. As comparing different SLAM versions would be really helpful instead of comparing               
just different camera systems.  
 
Our Milestones are: 
 
Milestone 1: Learn ROS to a level where we can record RGB and depth data and replaying through use of ROS and                      
Kinect/Realsense 

1. Setup ROS with Ubuntu. 
2. Get live feed from cameras. 

 
Milestone 2: Show a synchronized feed between the two cameras 

1. Get live feed from two cameras. 
2. Sync data from the 2 cameras.  

 
Milestone 3: Produce point cloud using the multi-camera SLAM algorithm 

1. Research and choose one of the following SLAM algorithms to implement with two kinects and two                
realsense. 

a. RTAB-Map 
b. MultiCol - ORBSLAM 
c. MCPTAM 

2. Get the SLAM algorithm working so that it can produce point cloud based on the data received from the                   
dual-camera system 

 
Stretch Goal: Test our generated point cloud against the ground truth (obtained by currently working single camera                 
SLAM algorithm) with Go-ICP script. 
 
Milestone Modification: 

Earlier we planned to test only two SLAM algorithms RTAB-Map , MultiCol ORBSLAM2 , but as the                 
project progressed ,we decided to test one more SLAM algorithm (MCPTAM) as we had enough time and resource                  
to do so. We dropped the plan to document the pros and cons of different camera systems as it was not that helpful                       
in choosing the SLAM algorithms and for the whole system. Instead we decided to test one more SLAM algorithm                   
(MCPTAM). 
 
Milestones Status and Tasks Accomplished: 

Deliverable TimeLine Status 

1. Live Camera running with ROS      
showing RGBD data 

Jan 27 
 

Done 
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2. Two Live Cameras running with      
ROS showing RGBD data and sync      
status 

Feb 7 Done 

3. 3D model of a room (lab       
environment) 
  a.Research on SLAM Algorithm 
  b.Make SLAM Work  

Stretch : Test against ground      
truth, and document the result 

Mar 14 
Feb 21 
Mar 10 
Mar 14 

1. RTAB-Map - Done 
2. MultiCol ORB-SLAM2 -   

Model not accurate 
3. MCPTAM - Issue with    

running algorithm  

Final Video  Mar 19 Done 

Final Report Mar 22 Done 

 
 
Milestone 1 : Learn ROS and Get feed with Cameras: 

We did a brief study of the ROS and got familiarized with the ROS environment. We successfully                 
demonstrated the live feed RGBD data from intel real sense ZR300 camera and Kinect v1 camera. We used Rviz to                    
visualize the data feed from the cameras. 

Team Members: Real Sense - Duke and Kaushik  
Kinect  - Etsu Nakahara 

 
Milestone 2 : Get Synchronized Feed from two cameras 

Since our system uses multiple cameras, we have to synchronize the feed from two cameras and feed the                  
SLAM algorithm with frames which are closest in time. We utilized the approximate time filter for synchronizing                 
the feeds which gives set of frames from two different topics , which are closest in time stamp. We faced some issue                      
with synchronizing the feed,as the delay between the synchronized frames was increasing over time. We tried to                 
explore the synchronizing queue sizes and experimented with different queue sizes for this problem. But it was not                  
helpful , as it was not effectively affected by the queue sizes. Queue size had limited effect on the synchronization.                    
Next we tried to investigate the Frame data. We found that higher the frame resolution and frame rate, delay was                    
significant. This might be due to the bandwidth limitation of the connected port. Decreasing the frame rate and the                   
frame resolution helped us solve this issue. Currently we use fisheye lens with 30fps and with frame resolution of                   
640x480. 
 
Milestone 3 : Get SLAM working with system.Produce the Point Cloud 

This milestone had three different sub-tasks within itself 
1. Research SLAM algorithm which can support multiple cameras 
2. Integrate the SLAM algorithm into the system 
3. Make SLAM algorithm work 

After the thorough study, we decided to pick up and work with 3 SLAM algorithms based on the previous                   
results and support for multiple cameras. Each team member picked up a SLAM algorithm and worked with it. 

1. MCPTAM - Etsu Nakahara 
2. MultiCol ORBSLAM - Kaushik Ram 
3. RTAB-Map - Duke and Ferrill 

 
MCPTAM: 

MCPTAM requires intrinsic calibration done with each cameras in the cluster and extrinsic calibration done               
with the whole cluster by using the customized calibrators. The calibration tools are provided as ROS launch files                  
(and so is the file to run the MCPTAM algorithm). As we are using two Kinect V1 for MCPTAM, for this                     
milestone, we calibrated the two Kinect V1 cameras with the provided intrinsic calibrator and the extrinsic                
calibrator. 
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By launching the ROS launch file of the intrinsic calibrator, the window for the calibration will be                 
instantiated. By capturing key frames from different angles of a checkerboard, the calibrator will calculate the                
reprojection error and save the calibrated parameters to a .yaml file and the camera. As the Figure 1 shows, if the                     
camera detects the corners in the checkerboard, the display of the calibrator will have blue indicator on the                  
checkerboard. By pressing the “Grab KeyFrame” button or by pressing space, the calibrator will capture that specific                 
keyframe. After repeating these processes with key frames taken from different angles of the checkerboard, by                
pressing the “Optimize” button, the calibrator will calculate the reprojection error based on the grabbed key frames.                 
The reprojection error is shown in red line. If the error is small enough, then the calibrated parameters can be saved                     
to a .yaml file and to the camera by pressing the “Save” button. 

 

 
Figure 4.1: The window of the intrinsic calibrator. 

 
In order to calibrate the Kinect V1, we had to edit the provided ROS launch file by specifying the camera                    

info and the raw RGB data from the Kinect camera so that it can calibrate the Kinect V1. However, the first problem                      
that I had encountered is that the calibrator could not instantiate. This was due to the mismatch of the camera model                     
required by the calibrator and the default camera model of Kinect V1. While the calibrator requires Taylor camera                  
model, Kinect set the camera model to plumb bob as default. Although the calibrator is supposed to change the                   
camera model of the Kinect V1 to Taylor camera model so that it can start calibrating the camera, as I observe the                      
camera info of the calibrating Kinect V1, the calibrator was only able to change the camera model for one moment                    
and the camera model will be reset back to plumb bob again. Hence, when the calibrator rechecks the camera model                    
of the camera, the changed camera model was already reset back to the default camera model, causing the calibrator                   
to keep checking and changing meaninglessly the camera model of the Kinect V1. 

The approach that I took to tackle this problem was to use the camera info from the webcam of the                    
computer. The developer of MCPTAM also provided a calibrator for webcams. What I did was to change the ROS                   
launch file of calibrator so that the calibrator received RGB data from the Kinect V1 but camera info from the                    
webcam. In this way, the calibrator can calibrate the Kinect V1 based on the RGB data of the Kinect V1 and set the                       
desired camera model to the webcam. Since the calibrator was able to change the camera model of the webcam                   
successful to Taylor camera model, using the camera info of the webcam allowed the calibrator to instantiate. Since                  
the calibrator cannot set the calibrated parameters to the Kinect V1, I moved the .yaml file with the saved parameters                    
to the file where the ROS launch file that launches the Kinect V1 camera will take in files with parameters to set its                       
camera info at the beginning. This way, when I used the Kinect V1 for MCPTAM, the Kinect V1 will set its                     
parameters based on the calibrated .yaml file. However, since there was also a possibility that using the camera info                   
of the webcam can cause errors in the calibrated parameters of the Kinect V1 camera, I redo the calibration again but                     
with camera info of Kinect V1 instead of the webcam. This works because now the Kinect V1 is not loading the                     
default parameters but the parameters that were calibrated with the webcam which has the correct camera model to                  
make the calibrator instantiate. Thus, at last, I was able to have two .yaml files for each Kinect V1 with the                     
parameters calibrated with the correct camera info and RGB data from the corresponding Kinect V1. 

By launching the ROS launch file of the extrinsic calibrator, or the pose calibrator, the window for the                  
calibration will be instantiated. The pose calibrator requires all cameras used in the multi-camera system to be                 
launched, and the display of the calibrator will show the RGB data of each camera. As the Figure 2 shows, there are                      
two windows that each show the RGB data of one of the two Kinect V1 that we are using. The extrinsic calibration                      
also uses a checkerboard. In order to calibrate the two Kinect V1, we had to edit the provided ROS launch file by                      
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specifying the camera info and the raw RGB data from the Kinect cameras, and furthermore, the number of corners                   
and length of the edges of the boxes in the checkerboard. The pose calibrator will first, by pressing space, initialize a                     
map based on the checkerboard captured by the first camera, as shown in Figure 3. Then, as we translate the second                     
camera to the checkerboard while the first camera is still maintaining the generated map, by pressing space again,                  
the second camera will be added to the map generated previously. Then, color dots that indicates features in the                   
environment will be shown in the window. To allow more accurate tracking and mapping when running the                 
MCPTAM, before optimizing the calibration, one should more around the cameras to let them undergo different                
motions and capture more map points. By pressing the “Optimize” button, the calculate the calibrated parameters. If                 
the residual error is small enough, one can save to a .dat file by pressing “Save” button. 

The first problem with the extrinsic calibration that I ran into was again that the calibrator could not                  
instantiate. Every time when I launch the ROS launch file, the system threw an error due to assertion failure. This                    
error was also observable when I ran MCPTAM. The assertion failure was due to not initializing a variable in the                    
cpp files. As I examined the code, it turned out that the initialization of the variable was positioned right after the                     
assertion statement. Hence, I moved the initialization statement one line above so that there would be no more                  
assertion failure due to the variable that would never be initialized otherwise. With this fix, both the pose calibrator                   
and the MCPTAM algorithm were able to instantiate. However, as I tried to initialize the map by the first camera,                    
the pose calibrator cannot initialize the map due great reprojection error shown in the red line in Figure 2.                   
Unfortunately, I wasn’t able to identify the cause of this error by the end of this quarter. In the future, I will continue                       
to work on MCPTAM, primarily solving the problems in the extrinsic calibration. 

 

 
Figure 4.2: The window of pose calibrator with the reprojection error 

 

 
Figure 4.3: The map generated by the first camera during the pose calibration if working properly  

 
The first problem with the extrinsic calibration that I ran into was again that the calibrator could not                  

instantiate. Every time when I launch the ROS launch file, the system threw an error due to assertion failure. This                    
error was also observable when I ran MCPTAM. The assertion failure was due to not initializing a variable in the                    
cpp files. As I examined the code, it turned out that the initialization of the variable was positioned right after the                     
assertion statement. Hence, I moved the initialization statement one line above so that there would be no more                  
assertion failure due to the variable that would never be initialized otherwise. With this fix, both the pose calibrator                   
and the MCPTAM algorithm were able to instantiate. However, as I tried to initialize the map by the first camera,                    
the pose calibrator cannot initialize the map due great reprojection error shown in the red line in Figure 2.                   
Unfortunately, I wasn’t able to identify the cause of this error by the end of this quarter. In the future, I will continue                       
to work on MCPTAM, primarily solving the problems in the extrinsic calibration. 
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MultiCol ORB SLAM: 

Since ORBSLAM gave good results with single camera system, we decided to go with MultiCol SLAM                
which is extended version of ORBSLAM2 and supports multiple camera feeds. There was no ROS build available                 
for this algorithm. So we made ROS integration resolving all the dependencies and successfully integrated and                
ported to ROS. MultiCol SLAM requires calibrated cameras, both intrinsic and extrinsic parameters in taylor camera                
model. We used some available MATLAB tool box to get the camera parameters. But the fisheye lens with ZR300                   
was not that clear. So the calibration tool was not able to get the camera parameters properly. Next we tried using                     
Opencv to get camera parameters, but the results given by opencv camera calibrators had large errors and not                  
accurate. So we resorted to using the MCPTAM which has an internal calibrator module with Taylor camera model.                  
It gave camera parameters better than opencv , but still with significant error. The SLAM algorithm works really                  
well with well calibrated information for a sample dataset. Since we were not able to get accurate calibration                  
information, the trajectory given for live camera feed was not that accurate. It had some trouble estimating the                  
camera pose and it was losing track often. This algorithm gives trajectory which can post processed to get the point                    
cloud information. It was generation trajectory, but the results were not accurate for live camera feed.  

 
Figure 4.4: Two Realsense cameras in a fixed rig. 

 
 

 
Figure 4.5: This is the multi camera orb slam module. Currently we are getting feeds from 2 cameras. Which you 
can see on the top left and bottom left windows. Green dots with blue boxes shows the features which are being 
tracked in those frames.On the right side it shows the trajectory of the camera. The motion of the camera being 

calculated from the tracked feature points. Green and Dark blue square boxes defines the camera system. Red dots 
represents the points which are used for estimating the camera pose. Blue crosses represents the key frames 

generated and it accurately gives the path of the camera motion.  This gives the trajectory file which contains the 
camera pose at each keyframe position. With some post processing , the 3D point cloud can be generated from the 

trajectory information. 
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RTAB-Map: 

 
Figure 4.6: Point cloud of part of the lab 

 
RTAB-Map supports multi-camera functionality by combining the graphs of individual cameras into one.             

Each camera is independent of each other and does not influence the graph of the other camera. This adds the                    
robustness and accuracy that we desire in the most simple sense. If one camera were to fail in the field, the other will                       
be able to continue. Furthermore, because the cameras are independent, we can separate data points during post                 
processing in case of error in a single camera. Having multiple cameras will provide more data points for the                   
increase in accuracy that we require. By utilizing the tf ROS package, we can visualize and keep track of multiple                    
coordinate frames and graphs. The transformation we used is to have the secondary camera relative to the main                  
camera. The tf package provides this transform by specifying the x/y/z offset in meters and rotation about x/y/z in                   
radians. These parameters can be calculated with an extrinsic calibration technique and then converted to the                
necessary offsets or they can determined by measuring the offsets between the physical cameras. RTAB-Map’s               
real-time generation of the point cloud provides the overlapping point cloud of two separate point clouds. This                 
provides additional points which is useful for post process.  

RTAB-Map did struggle with featureless environments and “empty space” environments. The latter refers             
to the fact when the cameras were more than roughly 4 meters away from the a wall or object. This issue does not                       
affect the end goal of utilizing the algorithm in a small tunnel, if the cameras are moved around as to avoid being                      
pointed down the tunnel and just to the sides of the tunnel. The featureless environment should also not be a problem                     
in the tunnels as the tunnels are not as uniform as the walls in a lab. Another issue to note is the provided method to                         
correct lost odometry. A window is provided to show where the user should reposition the camera to restart the                   
algorithm and hopefully correct the odometry. Even in testing in the lab, sometimes it is hard to restart the lost                    
odometry if the pattern is unrecognizable or a repeat feature. This problem can be exasperated in the tunnels were                   
one dirt wall looks just like the next.  
 
 

 
Figure 4.7: Setup for dual Kinect v2. This was a simple set up for testing purposes. RTAB-Map allows for the set-up 

to be more complex and can easily be changed. It does not require the intrinsic calibration that is needed for the 
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other two algorithms. The transformation can be measured and if desired, be done with a extrinsic calibration and 
converted to x/y/z offset and rotational offset. 

 
5. Conclusion 

 
We tried to mitigate the effects of limited field of view of the single camera system and effectively build a                    

robust system , which will not lose track in tight turns and also produces better and more accurate 3D models. We                     
increased the field of view using Fisheye lens and using multiple cameras. We have tested 3 SLAM algorithms                  
RTAB-Map, MultiCol SLAM, MCPTAM. We are able to successfully integrate the SLAM algorithm with our               
system. With RTABMAP we were able to successfully get the 3D point cloud of the lab. With MultiCol SLAM, the                    
model generated was not accurate and the system was not able to track effectively due to some calibration issue                   
with cameras. Since the fisheye lens in ZR300 were not clear, calibration was little challenging. Similarly,                
MCPTAM was not able to run because of extrinsic camera parameters. 

Future work on this would be to get accurate camera extrinsics with cameras placed in optimal position                 
(with little overlap in the field of view for MultiCol SLAM) and get the point cloud out from the system. Then we                      
have planned to compare the point clouds from different SLAM algorithm with registration script available with us.                 
We have also planned to head to Mud caves near by to get close to real field results to test under different lighting                       
conditions. One more challenge that may arise with multi camera system is the lighting. Currently we have single                  
LED panel for single camera and it sufficiently lights the system. But once we move to multi-camera system, we                   
may need to find a better way to light a larger field of view. We have also planned to collect some data for testing                        
out different SLAM algorithms under different conditions. Post processing is another possibility to explore. While               
RTAB-Map provides a suitable point cloud for real time mapping, there can be post processing to remove stray data                   
points and smooth out the results. 
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