

CSE 145/237D FINAL REPORT

Junyu	Wang,	Zeyangyi	Wang	
						

3D	Reconstruction	with	Dynamic	Fusion	
						

·

 1

	

Contents	

Abstract	...	2	

Background	..	2	

Implementation	...	4	

Development	setup	...	4	

Real	time	capturing	...	5	

Build	Point	Cloud	Library	...	5	

Build	PCL	grabber	...	6	

Write	to	Dynamic	Fusion	..	7	

Milestones	&	Problems	..	7	

Conclusion	..	8	

References	...	8	

·

 2

Abstract
This paper introduces a new integration of Dynamic Fusion with Intel Realsense camera to improve sample quality
and reconstruction consistency. The background section includes a general introduction to this research topic. Next
in the implementation section we’ll discuss technical details of our attempts in length, divided as several stages of
the project. The next section is a comparison to our old milestones at the beginning of this quarter and a discussion
of difficulties we have met so far. In the end we’ll conclude with our contributions to Dynamic Fusion and potential
goals in the future.

Background
Dynamic 3D reconstruction technique has been a recent focus for real time medical augmented reality research that
helps diagnosing and imaging during operations. 3D graphics model is mathematical representation of any three-
dimensional object that can be displayed visually as a two-dimensional image through a process called 3D rendering
or used in non-graphical computer simulations and calculations. The medical application of 3D reconstruction
collects data from a tiny camera that receives both visual and depth information and then transmits to the backend
processing unit, which outputs an accurate dynamic reconstruction of organs and their relative locations inside the
patient’s body. It is not only more accurate, but also much less intrusive therefore safer than traditional methods.

Fig.1 3D reconstruction of upper respiratory tract

The concept of dynamic reconstruction is based on static reconstruction by University of Washington in
KinectFusion: Real-Time Dense Surface Mapping and Tracking[1] , which utilizes a simple depth camera and real
time 3D mapping algorithms to build a 3D surface tracking system. KinectFusion is an open source project and
requires minimal computing resources as commodity depth camera and graphical processing units will suffice. The
picture below is an example of depth mapping of a desktop. In grayscale mapping the brightness indicates closeness
to the camera and shades means the object is farther away.

·

 3

Fig.2 Static reconstructed scene by KinectFusion

Dynamic Fusion is essentially an extension of KinectFusion but includes reconstruction of objects in motion. We
referred to the article: DynamicFusion: Reconstruction and Tracking of Non-rigid Scenes in Real-Time[2] that
implements a real time 3D registration system with almost the same hardware as KinectFusion. Dynamic Fusion
introduces SLAM system that provides estimation of interstate of moving objects based on interpolation and
reflecting lights in the scene. However unlike KinectFusion, the technical details of Dynamic Fusion are not all
disclosed, bringing difficulties to replicating their results for further development. The following example captures a
succession of movements by a man holding a cup. Although the depth camera has a relatively low sampling rate, the
missing details in between scenes are interpolated by Dynamic Fusion and it actually outputs smooth scenes.

Fig.3 Example scene snapshots by Dynamic Fusion

Current research & development around Dynamic Fusion has all been implemented on Microsoft Kinect camera
system, as there is no other official support package provided for other systems. This article explores a possible
improvement by creating an interface between Intel Realsense camera and Dynamic Fusion. We believe an
integration with Intel Realsense camera brings better results and opens new research possibilities for the following
advantages:

● Better scanning depth. The camera is recording at a very close distance from the objects in our application
and Realsense is optimized to capture gestures/facial expressions of close objects, while Kinect focus on
body movements for gaming.

● More flexible. Realsense has power/data cords combined in one USB cable. Also more new support

packages/post processing libraries provided.

·

 4

Fig.4 Comparison between Realsense(left) and Kinect(right) cameras.

Implementation
Since Realsense does not support Dynamic Fusion directly, we have to gather data from Realsense and port into a
popular computer vision development platform - Point Cloud Library (PCL) then convert it into .pcd file which
Dynamic Fusion can read. This section includes discussion of technical procedures of this project, design decisions
and implementation details, with five subsections organized step by step in chronological order.

Fig.5 Diagram of implementation flow

Development setup
The development environment is Thinkpad W530 + Linux Debian 8.0/Windows 10. We built and installed Dynamic
Fusion project from BitBucket. The project compiles on Nvidia Eclipse, an IDE specifically designed for computer
vision developments. Other dependencies include CUDA libraries and Realsense SDK package.

Fig.6 Realsense depth image

·

 5

Real time capturing
To run initial tests with Dynamic Fusion and save input data for comparison with Realsense, we set up a testing
bench and collected a set of samples with KinectFusion. The testbench used a filled water balloon fixed on a flat
table with strings attached to the surface of the balloon. The balloon is used to simulate soft tissue with noticeable
change of shape under external pressure. During recording the string will be stretched which causes deformation of
the surface of the balloon. The collected data in .pcd format are visually represented in three dimensions as the
picture shows below.

Fig.7 Data set 3 reconstruction image

For better comparison with other environmental variables, we conducted the experiments multiple times under
different conditions as explained the table below.

Conditions Camera Moving Vertically Camera Moving Horizontally Camera Static

Balloon Deforming Data set 1 Data set 2 Data set 3

Balloon Static Data set 4 Data set 5 Data set 6

Build Point Cloud Library
Before installing PCL, we need the following dependencies:

Name Description & Usage

Boost Threading and shared pointer library for C++

Eigen Matrix backend for SSE optimized computation

FLANN Library for fast approximate nearest neighbors search

VTK 3D point cloud rendering and visualization package

Then we used Cmake to build PCL.After configuration, build the project in Microsoft Visual Studio.

·

 6

Fig.8 Cmake configure & generate PCL

Build PCL grabber
The PCL grabber [3] integrates with Realsense soft development package and is able to capture and save video
stream in real time. The grabber automatically converts format to PointCloud.

Building PCL grabber follows almost the same procedure as we did in Cmake & Visual Studio with PCL. However
it has a few additional dependencies.

Name Description & Usage

Gtest Testbench by Google for C++ development

OpenNI Grab point clouds from OpenNI compliant devices

Qt Provide graphical user interface for PCL_Viewer

Fig.9 PCL grabber.cpp

Fig.9 is a snippet of source code from PCL grabber. The system works in a few steps:

a. Push depth image to the depth buffer.
b. Pull filtered depth image from the depth buffer.
c. Project (filtered) depth image into 3D.
d. Fill XYZ point cloud with computed points.

·

 7

e. Fill XYZ-RGBA point cloud with computed points.
f. Assign colors to points in XYZRGBA point cloud.

The Point Cloud Data is saved in C++ std::vector array. It consists of multiple variables of space, distance and
colors on the captured scene. The basic variables are XYZ that gives orientation of each point in space. RGBA on
the other hand defines color of each point.

Write to Dynamic Fusion
When we have gathered input data from Realsense that is readable to PCL, the last step is to write it as .pcd file for
Dynamic Fusion. Fortunately PCL has included a writer file as below:

Fig.10 pcd_write.cpp

Milestones & Problems
We spent the first four weeks working on background research, initial setup and sample collection. Then for the next
two weeks we tried creating a valid representation of warp-field, an essential part of Dynamic Fusion’s rendering
algorithm. In the sixth week our project advisor recommended a new set of milestones because we were unlikely to
finish all tasks in time. We actually started working on most of this project very late into the quarter since we lost
contact with him midway through the quarter for about a week. We have initially attempted to implement PCL
grabber on Linux but found out later it was not feasible.

The lack of basic functioning resources and tools also contributed to our slow start. We spent a lot of time setting up
work environment from installing operating system to finding dependencies for software packages. The Intel
Realsense camera came with unstable connections. Since there is only a single laptop with proper graphical
processing unit we could not develop separately so if one of us was stuck we had to wait till the issue was solved.
Realsense integration with Dynamic Fusion is a new topic therefore there is little previous experience or solutions
online when we face certain technical difficulties.

Milestones Results Details

Background research based on Completed Finished on time.

·

 8

Microsoft and UWashington
papers.

Initial setup of development
environment.

Completed Took more time than expected. Did
another setup for new set of
milestones.

Gather input data for
DynamicFusion.

Completed Finished on time.

Implement a representation of a
warp field based on the KinFu
TSDF.

Did not complete The object takes more time than we
expected and is out of scope of this
quarter.

Implement the rest of Dynamic
Fusion based on our own
modification of KinectFusion.

Did not complete The object takes more time than we
expected and is out of scope of this
quarter.

Modify or add image grabber to
Intel Realsense camera API then
output depth map to pcl format.

Did not complete Revised after week 6.
First attempt on Linux failed
because PCL grabber requires
RSSDK (Windows only).
Cmake dependency issue when
building PCL grabber.

Convert pcl formatted data
into .pcd files.

Completed Revised after week 6.
Finished on time.

We are unable to produce a final demo because the PCL grabber installation failed to build. The error message
suggests Cmake can not link to the correct version of VTK library even when we have placed it under the right path.
The problem seems platform independent and we tried with all versions of VTK package we can find. There are no
similar problems online and our project instructor also helped debugging. If time permits we’d rebuild everything
from the start on a clean system.

Conclusion
Realsense integration with Dynamic Fusion provides a better alternative compared to Kinect implementation and is
well suited for medical reconstruction. Our implementation creates a reliable interface between two platforms. It
makes Dynamic Fusion more powerful now it has higher resolution in close up and also makes object tracking easier.
Currently this project only works on Windows platform but the same PCL grabber could work on Linux and MacOS
when Intel releases its support package & driver for more platforms.

References
[1] http://grail.cs.washington.edu/projects/dynamicfusion/papers/DynamicFusion.pdf
[2] http://homes.cs.washington.edu/~newcombe/papers/newcombe_etal_ismar2011.pdf

·

 9

[3] https://github.com/taketwo/rs
Fig.1 https://opus4.kobv.de/opus4-zib/files/1044/ZR_07_41.pdf
Fig.2 http://homes.cs.washington.edu/~newcombe/papers/newcombe_etal_ismar2011.pdf
Fig.3 http://grail.cs.washington.edu/projects/dynamicfusion/papers/DynamicFusion.pdf

