Holistic Power Side Channel Leakage Assessment

It is surprisingly easy to extract critical information from a computer chip by simply monitoring the amount of power that it consumes over time. These power side channels have been used time and time again to break otherwise secure cryptographic algorithms. Countless mitigation strategies have been used to thwart these attacks. Their effectiveness is difficult to measure since vulnerability metrics do not adequately consider leakage in a comprehensive manner. In particular, metrics typically focus on single instances in time, i.e., specific attack points, which severely underestimate information leakage especially when considering emerging attacks that target multiple places in the power consumption trace.

We developed a multidimensional metric that addresses these flaws and enables hardware designers to quickly and more effectively understand how the hardware that they develop is resistant to power side channel attacks. Our metric considers all points in time of the power trace, without assuming an underlying model of computation or leakage. This will enable the development of more secure hardware that is resilient to power side channel attacks. This work was recently published at the International Conference on Computer Aided Design (ICCAD), one of the premier forums for technical innovations in electronic design automation.

For further information see: Alric Althoff, Jeremy Blackstone, and Ryan Kastner, “Holistic Power Side-Channel Leakage Assessment: Towards a Robust Multidimensional Metric“,  International Conference on Computer Aided Design (ICCAD), November 2019 (pdf)

Documenting Maya Archaeological Sites with Low-cost 3D Imaging Sensors

Deep in the heart of the Peten Basin in Eastern Guatemala lies the ruins of the ancient Maya civilization. Jungles have overtaken these ancient cities, leaving archaeologists to painstakingly excavate their ruins in order to uncover their secrets about their culture, traditions, and rituals. This process is time-consuming and tedious; archaeologists carefully tunnel into the temples and other structures using pickaxes and shovels. They manually sift through the limestone remains in hopes of finding artifacts, tombs, ancient walls, masks, and murals and better understand the usage of these structures and artifacts. The result of this is hundreds of meters of man made tunnels that burrow deep into these structures and snake across multiple levels.

Dr. Quentin Gautier successfully defended his PhD thesis which focused on using modern technologies to better document these archaeological sites. His thesis documents is a series of 3D imaging prototypes, which can generate large-scale 3D models of Maya archaeological sites. Over the years, Quentin lead the development of several generations of scanning systems and he ventured on several expeditions deep in the the Guatemala jungle to deploy these systems. The result is an unprecedented amount of data collection, which has turned into impressive 3D models that are viewable in virtual reality and other 3D visualization systems.

Quentin’s PhD journey was much like these excavations. It was at times painstaking and tedious. He is an expert system builder and this often conflicted with the unfortunate publish-or-perish model of academics. He certainly could have focused on writing more papers on incremental ideas in lieu of developing real systems that were field tested and deployed. In the end, I believe his thesis will be more impactful than these unwritten papers. The excavation sites that he helped document are windows into our past, and many of these windows have been closed as the excavations have been backfilled in order to preserve these precious sites. Quentin’s digital models will allow archaeologists and others all over the world to view these cultural heritage treasures. His system development will help our research group’s continued efforts to use modern technologies to aid in scientific purposes. And his mentorship to the countless undergraduate students (like Giovanni below) will have lasting impacts on their careers.

Congratulations Dr. Gautier and best of luck in Japan! I look forward to seeing all of the amazing systems that you develop in the future.

FastWave: A Hardware Architecture for Audio Neural Networks

When Siri, Alexa, Cortana, Google Assistant or your other favorite digital assistant talk to you, they rely on neural networks to create the audio file that speaks to you. WaveNet is a deep neural network for generating audio that provides amazingly accurate results. Yet, this process is slow and cannot be performed in real-time. Our FastWave hardware architecture accelerates this process providing a 10x decrease in the time required to generate the audio file as compared to a state of the art GPU solution. This is the first hardware accelerated platform for autoregressive convolutional neural networks.

FastWave is being presented at the International Conference on Computer-aided Design (ICCAD). ICCAD is one of the top conferences for topics related to hardware design automation. The paper was developed as a project in my CSE 237C class, which teaches hardware design and prototyping using high level synthesis. Shehzeen Hussain, Mojan Javaheripi, and Paarth Neekhara developed the initial idea as a final class project. They continued their work after class and the end result is the paper, FastWave: Accelerating Autoregressive Convolutional Neural Networks on FPGA.

How Secure is Your Hardware?

Dr. Alric Althoff successfully defended his PhD thesis “Statistical Metrics of Hardware Security”, which helps answer a fundamental question: How secure is your hardware? This is a difficult task — defining what it means to be secure is something that the computer security field has grappled with for decades.

There has been a bevy of high profile attacks on hardware most famously Spectre and Meltdown. It is no longer a question of is your hardware secure (that is easy to answer — it is not), but rather how do we know whether a mitigation technique or run-time vulnerability detection mechanism is effective? Alric developed a set of metrics aimed at answering this question. These metrics enable you to rank when your design is most vulnerable to a power side channel attack, answer questions about the randomness of your random number generator, and determine how hardware optimizations and design decisions affect the leakage of secure information.

While we are on the topic of metrics and definitions, I do not yet know how to define “data science” (nor do I think that term will be properly defined for some time), but I do know that Alric is an exemplar of a data scientist. He is able to quickly understand a problem and come up with elegant solutions to those problems. Thus, it is not surprising that Alric has a been a tour de force for our research group playing prominent roles in almost all of our projects. One of my mantras for the past several years has been “You really should talk to Alric about this.”. His thesis is impressive, and yet this is only a small subset of his research during his PhD tenure.

Luckily (for us) Alric is not moving far; he took a position at Leidos just across the street from campus. Hopefully, we can continue to leverage his expertise going forward.

Congrats Dr. Althoff, best of luck in the future, and don’t be a stranger!

-Ryan

Localizing Underwater Vehicles Using Ambient Noise

Perry deploying a swarm of Autonomous Underwater Explorers.

Dr. Perry Naughton successfully defended his PhD titled “Self-localization of a mobile swarm of underwater vehicles using ambient acoustic noise”. His thesis developed a series of techniques that enabled swarms of underwater vehicles to determine their positions by only listening to the ambient ocean noise.

Underwater localization is an important yet difficult problem since water severely attenuates the GPS signals — it only propagates very short distances (tens of centimeters) and thus we typically rely on active acoustic solutions to localize underwater vehicles. These require extensive infrastructure (e.g., deploying buoys) or are costly (e.g., a Doppler velocity logger costs thousands of USD). Using ambient noise is attractive since it only requires the vehicles to have a microphone which simple and cheap (only tens of USD). Perry’s research showed that it is possible to estimate the geometry of a swarm of mobile, underwater vehicles with ambient acoustic noise.

Doing this work required a large network of collaborators. Perry worked closely with the Jaffe Lab to use their Autonomous Underwater Explorers to validate his ideas. And he spent a year in Grenoble working closely with Philippe Roux on some of the more theoretical aspects of his research. Additionally, he worked with a number of other scientists as part of Engineers for Exploration and CISA3. His “side projects” involved imaging shipwrecks, scanning archaeological sites, and creating large-scale 3D models of coral reefs.

Perry received a large number of fellowships and awards over the years including the NSF Graduate Research Fellowship, NSF Integrative Training and Research Award, NSF Graduate Opportunities World Wide, Chateaubriand STEM Scholarship (French Embassy), Friends of the International Center Scholarship, ARCS Foundation, and the Henry Booker Prize for Ethical Engineering.

Congrats Dr. Naughton! You’ve had an impressive UCSD career over the past decade (Perry was an undergrad here before doing his PhD). You will be missed, but we look forward to seeing the great things that you will do.

New PhD Student: Alireza Khodamoradi

Kastner_group_AlirezaWe are delighted to welcome Ali Khodamoradi as one of the newest PhD students to the Kastner Research Group (KRG). Ali is far from a stranger. He started working with us in 2012 as volunteer on the Engineers for Exploration camera trap project. About a year after that, he was accepted into the Wireless Embedded Systems MAS program. Last Spring, he graduated from that program, and was accepted into the CSE PhD program. He is the first student to go from WES MAS graduate to CSE PhD program. We are happy to have him as an “official” member, after several years as an “unofficial” member.

Invited Paper on Coral Reef Annotation

snap-2The visual documentation of seafloor habitats is playing an increasing important role in understanding habitats like coral reefs. Our new collaboration with the Sandin Lab at the Scripps Institution of Oceanography is focusing on developing a pipeline to automate the data collection and annotation of large swaths of coral reefs. Our invited paper at this years International Conference on Underwater Networks and Systems discusses the issues related to collecting this data, the challenges with processing the data, and the potential to automate the process through computer vision and robotic systems.

Robotics Research Highlighted in Triton Magazine

triton copyThe Triton Magazine talked about our robotics research and development efforts in an article titled Life Among the Drones. The article went back in time a bit, and to talk with  Engineers for Exploration (E4E) alumni Radley Angelo about his experiences in developing some of our first drones. It also discussed our more recent efforts in studying the Maya archaeological site El Zotz in Guatemala. Current E4E undergraduate Dominique Meyer also provides his insights about the future of drone technology.