Team Rabbit Ears places 2nd in Software Defined Radio Contest

The RFNoC & Vivado HLS Challenge is an open invitation to create innovative and useful open-source RF Network on Chip (RFNoC) applications. The goal was to highlight the productivity of Xilinx Vivado High-Level Synthesis (HLS) design tools using the National Instruments/Ettus Research Universal Software Radio Peripheral (USRP) hardware. The USRP is one of the most successful hardware platforms for software defined radio.

Team Rabbit Ears were up to the challenge. Team members Alireza Khodamoradi (CSE PhD student in our research group), Andrew Lanez (Wireless Embedded Systems MAS Alumni), and Sachin Bharadwaj Sundramurthy (CSE MS student) created an HDTV receiver block. This is able to pick up HDTV broadcast over the air. Have a look at their video below for more details.

They were awarded second place which comes with a complete USRP system from Ettus research and a presentation at the 2017 GNU Radio Conference. If you want all of the details, their work is open-source and is available on the Xilinx github repository.

Congrats to Alireza, Andrew, and Sachin! What a great team spanning multiple graduate programs in CSE!

Cognex Funds Hardware Accelerated Computer Vision Project

Our group has a long history with Cognex. The company itself is headquartered in Natick, MA, but they have a growing research lab in San Diego. Our group was first “raided” for talent when John McGarry (Sr. VP R&D) hired (my then post-doc) Ali Irturk. Since that time, they have expanded substantially which includes a large number of people with direct ties to the Kastner Research Group (KRG). This includes Isaac Philips (undergraduate KRG researcher and MS student), Janarbek Matai (KRG PhD alumni), and Wireless Embedded Systems (WES) MAS alumni Chris Neuhauser. Several of our current graduate students have also spent time at Cognex including Alric Althoff and Alireza Khodamoradi (also a WES MAS alumni). The picture shows those at Cognex SD research with UCSD ties.

We are happy to continue our research collaboration with Cognex. Their high-speed image sensors (operating at 10,000s frames per second!) provide unique research problems. And we enjoy seeing our ideas transitioned into their products. More specifically, our collaboration has resulted in several major technical contributions including developing hardware accelerated architectures for compressed sensing and investigating novel event based sensors. We look forward to our future research collaborations with Cognex. And hopefully, we will continue to serve as a pipeline for future Cognex employees.

Press releases: UCSD, UCSD Jacobs School , UCSD Computer Science